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We study the low-frequency, long-wavelength dynamics of soft and semisoft nematic elastomers using two
different but related dynamic theories. Our first formulation describes the pure hydrodynamic behavior of
nematic elastomers in which the nematic director has relaxed to its equilibrium value in the presence of strain.
We find that the sound-mode structure for soft elastomers is identical to that of columnar liquid crystals. Our
second formulation generalizes the derivation of the equations of nematohydrodynamics by Forsteret al. to
nematic elastomers. It treats the director explicitly and describes slow modes beyond the hydrodynamic limit.
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I. INTRODUCTION

Nematic elastomers(NE’s) [1–4] are rubbery materials
with the macroscopic symmetry properties of nematic liquid
crystals[5,6]. In addition to the elastic degrees of freedom of
ordinary rubber, nematic elastomers possess the internal, ori-
entational degree of freedom of liquid crystals. Since NE’s
are amorphous solids rather than fluids, their mechanical
properties differ significantly from those of standard nematic
liquid crystals. The interplay between elastic and orienta-
tional degrees of freedom is responsible for several fascinat-
ing properties of NE’s. For example, temperature change or
illumination can change the orientational order and cause the
elastomer to extend or contract by several hundred percent
[7–9]. Nematic elastomers display a soft elasticity[10–13]
characterized by vanishing shear stresses for a range of lon-
gitudinal strains applied perpendicular to the nematic direc-
tion. They exhibit an anomalous elasticity in which certain
bending and shear moduli are length-scale dependent and
vanish or diverge at long length scales[14–16].

In addition to unusual static properties, NE’s have an in-
triguing dynamic mechanical behavior. Early rheology ex-
periments on liquid crystalline elastomers[17] found no
nematic effects in NE’s. Later, however, several experiments
[18–21] observed a genuinely unconventional response to
oscillatory shear. It turns out that an internal relaxation of the
nematic director leads to a dynamic mechanical softening of
NE’s. This behavior has been named dynamic soft elasticity.
It makes NE’s interesting for device applications in areas
such as mechanical vibration damping[19] (exploiting the
fact that the mechanical loss is record high over a wide range
of temperatures and frequencies) or acoustics where NE’s
open the possibility of acoustic polarization[22] (using the
fact that only particular soft shears are strongly attenuated)
analogous to the optical polarization in birefringent media.

The theoretical investigation of the dynamic-mechanical
properties of NE’s was pioneered by Terentjev and Warner
(TW) and co-workers[1,18,22–24]. References[1] and [22]
present a detailed derivation of equations governing the
long-wavelength, low-frequency dynamics of NE’s and de-
rive their associated mode structure, which includes nonhy-
drodynamic, rapidly decaying modes. This derivation, which
assumes a single relaxation time for the director, is based on
the Lagrangian approach[25] to the dynamics of continuum

systems in which nondissipative forces are calculated as de-
rivatives of an energy functional and dissipative forces as
derivatives of a Rayleigh dissipation function. The TW work
focuses primarily on the rheological response in both soft
and semisoft NE’s at zero wave number, and it neglects con-
tributions to dynamical equations arising from the Frank free
energy for director distortions, which are higher order in
wave number than those arising from network elasticity. As a
result, as we shall see, the mode structure derived in Refs.[1]
and [22] misses diffusive modes along symmetry directions
in soft NE’s. When contributions from the Frank free energy
are included and those from the elastic network are excluded,
the TW approach reproduces the original Leslie-Ericksen
equations[26,27] of nematodynamics, excluding the rota-
tional inertial term that is usually discarded[28], or is miss-
ing entirely in alternative derivations[5] of these equations.

In this paper, we will present alternative approaches to
deriving the equations governing the dynamics of NE’s.
First, we will derive the exclusively hydrodynamical equa-
tions for those variables whose characteristic frequencies
vanish with wave number. These equations, like those for the
hydrodynamics of smectic[5,29] and columnar[5] liquid
crystals, exclude nonhydrodynamic director modes. Interest-
ingly, the modes for soft NE’s predicted by these equations
are identical in form to those of columnar liquid crystals[5]
with three pairs of sound modes and diffusive modes along
symmetry directions where sound velocities vanish. One pair
of sound modes is predominantly longitudinal with nonvan-
ishing velocity at all angles. A second pair is predominantly
transverse with a velocity that vanishes for wave vector ei-
ther parallel or perpendicular to the uniaxial symmetry axis,
and a third pair is completely transverse with a velocity that
vanishes for wave vector parallel to the symmetry axis, but is
nonzero otherwise. We then derive the phenomenological
equations for the slow dynamics of all displacement and di-
rector variables in NE’s using the Poisson-Bracket formalism
[30,31] for obtaining the dynamics of coarse-grained vari-
ables, applied so successfully to the study of dynamical criti-
cal phenomena[32], for deriving phenomenological equa-
tions for any set of coarse-grained variables whose dynamics
is slow on a time scale set by microscopic collision times.
Like TW, we assume a single relaxation time for the director.
We do, however, discuss how this constraint can be relaxed.
When applied to fluid nematic liquid crystals, the Poisson-
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bracket formalism is equivalent to that used by Forsteret al.
[33,34] in their derivation of the hydrodynamics of nematics.
Our dynamical equations for NE’s reduce to the equations of
nematohydrodynamics derived by Forsteret al. when elastic
rigidities vanish and to the purely hydrodynamics equations
for NE’s when fast modes are removed. When contributions
from the Frank free energy are ignored, our equations are
identical to those derived by TW. We will not discuss random
stresses or inhomogeneities in this paper, though they con-
tribute static components in light scattering experiments[35]
that may obscure the observation of the NE modes we dis-
cuss here.

The outline of our paper is as follows. In Sec. II we
briefly review the general Poisson-bracket formalism for ob-
taining coarse-grained dynamics. Section III focuses on the
pure hydrodynamics of NE’s. We set up equations of motion
for the momentum density and elastic displacement. We de-
rive the appropriate elastic energy entering these equations
by integrating out the director degrees of freedom. Then we
compare the hydrodynamic equations to those of conven-
tional uniaxial solids and columnar liquid crystals. After ex-
tracting the sound velocities of the modes, we finally deter-
mine the full mode structure in the incompressible limit.
Section IV features our formulation that explicitly accounts
for the dynamics of the director. We set up equations of
motion for the momentum density, elastic displacement, and
director. These are then compared to the equations of motion
for uniaxial solids. We determine the mode structure. Finally,
we compare our results to the results obtained by TW. A brief
summary is given in Sec. V.

II. COARSE-GRAINED DYNAMICS

Stochastic dynamical equations for coarse-grained fields
[31,32] can be obtained by combining the Poisson-bracket
formalisms of classical mechanics[25], which guarantees the
correct reactive couplings between fields with opposite signs
under time reversal, and the Langevin[36] approach to sto-
chastic dynamics, which provides a description of dissipative
processes and noise forces. LetFmsx ,td , m=1,2, . . . , be a
set of coarse-grained fields whose statistical mechanics is
described by a coarse-grained HamiltonianH. The dynami-
cal equations forFmsx ,td are first-order differential equa-
tions in time:

Ḟmsx,td = −E ddx8E dt8hFmsx,td,Fnsx8,t8dj
dH

dFnsx8,t8d

− Gm,n

dH
dFnsx,td

+ zmsx,td. s2.1d

Here and in the following the Einstein summation conven-
tion is understood. The first term on the right-hand side is a
nondissipative velocity, also known as the reactive term, that
contains the Poisson brackethFmsx ,td ,Fnsx8 ,t8dj of the

coarse-grained fieldsf37g. The reactive term couplesḞm to
dH /dFn only if Fm andFn have opposite signs under time
reversalswhen external magnetic fields are zerod. The sec-
ond term on the right-hand side is a dissipative term.Gm,n are

the components of the so-called dissipative tensor. This ten-

sor couplesḞm to dH /dFn only if Fm andFn have the same
sign under time reversal. If the noise termzm is present, Eq.
s2.1d represents a stochastic or Langevin equation. As such,
Eq. s2.1d may be used to set up a dynamic functionalf38–40g
to study the effects of nonlinearities and fluctuations via dy-
namical field theory. In this paper we are not interested in
these effects. Hence we focus on linearized hydrodynamic
equations and pay no further attention to noise.

III. PURE HYDRODYNAMICS

Hydrodynamics describes the dynamics of those degrees
of freedom whose characteristic frequenciesv vanish as
wave number tends to zero. In other words, hydrodynamics
focuses exclusively on theleading low-frequency, long-
wavelength behavior. All other degrees of freedom, even
though they might be slow, are, strictly speaking, not hydro-
dynamic ones. In this section we will derive the hydrody-
namic equations of NE’s. These equations apply for frequen-
cies v such that vt!1, where t is the longest
nonhydrodynamic decay time in the system. As we will show
in the next section, the characteristic time for director decay
is in fact very slow witht,10−2 s [41,42] so that the regime
of applicability of hydrodynamics is quite small for current
NE’s. It is imaginable, however, that other systems will be
found with shorter decay times.

There are two general classes of hydrodynamic variables:
conserved variables and broken-symmetry variables. A
single-component NE has the same set of conserved vari-
ables as a fluid: energy densitye mass densityr, and mo-
mentum densityg. It also has the same broken-symmetry
variables as a crystalline solid—namely, three displacement
variables—though, strictly speaking, these variables in an
elastomer are not associated with a macroscopic broken sym-
metry because in the absence of orientational order elas-
tomers have the same macroscopic rotational and transla-
tional symmetry as a fluid. Since it is rotational symmetry
that distinguishes a nematic elastomer from an isotropic one,
it could be argued that the nematic director should be a hy-
drodynamic variable, but as in smectic and columnar liquid
crystals, the director degrees of freedom decay in micro-
scopic times to their preferred configuration in the presence
of strain and are thus not hydrodynamic variables. Elas-
tomers differ from equilibrium crystals in at least two impor-
tant ways: The first, alluded to above, is that they are not
periodic and thus do not have mass-density wave order pa-
rameters whose phases act as broken-symmetry hydrody-
namic variables; rather, Lagrangian displacement variablesu
take their place. The second is that an elastomer is perma-
nently cross-linked: it is a classical rubber in which changes
dr in mass density are locked to changes in volume such that
dr /r=−= ·u and in which permeation in which there is
translation of a mass-density wave without mass motion is
prohibited. Thus mass density is not an independent hydro-
dynamic variable, and we are left with a total of5+3−1
=7 independent variables and 7 associated hydrodynamic
modes. These modes are heat diffusion and, depending on
direction, either six propagating sound modes, four propagat-
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ing sound modes and two diffusive displacement-velocity
modes, or two longitudinal sound modes and four diffusive
displacement-velocity modes. In what follows, we will con-
sider only isothermal processes so that heat diffusion can be
ignored.

A. Elastic energy

To derive the hydrodynamical equations for NE’s, we first
need the appropriate elastic free energy. The elastic constant
measuring the energy of strains in planes containing the an-
isotropy axis[the shear modulusC5 to be defined in Eq.
(3.2)] vanishes as a result of the broken symmetry brought
about by the establishment of nematic order. Thus a good
starting point for this free energy is that of a uniaxial solid
with this elastic constant simply set to zero. This leaves cer-
tain soft directions in which distortions cost zero energy, and
as in smectic and columnar liquid crystals[5], curvaturelike
terms that are quadratic in second-order spatial derivatives
have to be added to ensure stability. To make contact with
dynamical equations involving the director to be presented in
Sec. IV, rather than simply adding these terms, we find it
useful to derive them from the free energy of a nematic elas-
tomer expressed in terms of both the strain and directors. We
will restrict our attention to harmonic distortions.

Elastomers are permanently cross-linked pieces of rubber
whose static elasticity is most easily described in Lagrangian
coordinates in whichx labels a mass point in the unstretched
(reference) material andRsxd=x+usxd, where usxd is the
displacement variable, labels the position of the mass pointx
in the stretched(target) material. We will use Lagrangian
coordinates throughout this paper. We will, however, on oc-
casion make reference to Eulerian coordinates in whichr
;Rsxd specifies a position in space andusr d the displace-
ment variable at that position.

The elastic energy of a nematic elastomer can be divided
into three parts:

H = Hu + Hn + Hu,n, s3.1d

whereHu is the usual elastic energy of a uniaxial solid,Hn
is the Frank free energy of a nematic, andHu,n is the energy
of coupling between strain and director distortions.

Choosing the coordinate system so that thez direction
coincides with the uniaxial direction, we have, to harmonic
order [43],

Hu =E d3xHC1

2
uzz

2 + C2uzzuii +
C3

2
uii

2 + C4uab
2 + C5uaz

2 J .

s3.2d

Here uij are linearized components of the Lagrange strain
tensoruII:

uij =
1

2
s]iuj + ] juid. s3.3d

We will use the convention that indices from the beginning
of the alphabetsha,bjd assume the values 1 and 2 whereas
indices from the middle of the alphabetshi , j ,k, ljd run from
1 to 3. Note that, compared to our work on the anomalous

elasticity of NE’sf14,15g, the elastic constants in Eq.s3.2d
have a somewhat different definition that is geared towards
taking the incompressible limit. Here we have arranged
things so that the terms featuringC2 andC3 involve the trace
of the strain tensor. In the incompressible limit that we will
eventually take one hasuii =0 so thatC2 andC3 drop out.

Expanded to harmonic order in the deviationdn=n−n0
from the uniform equilibrium staten0= êz the Frank energy
reads

Hdn =E d3xHK1

2
s]adnad2 +

K2

2
s«ab]adnbd2 +

K3

2
s]zdnad2J ,

s3.4d

where«ab=−«ba is the two-dimensional Levi-Cività symbol.
For notational simplicity in the remainder of this paper, we
will replacedn by n with the understanding that it has only
two componentsna. With this notation,Hdn can be expressed
as

Hdn = −
1

2
E d3x naMabs=dnb, s3.5d

where

Mab = sK1 − K2d]a]b + sK2]'
2 + K3]z

2ddab s3.6d

and where]'
2 =]a]a with the Einstein convention understood.

The coupling energy, finally, can be written in the form

Hu,n =E d3xHD1

2
Qa

2 + D2uzaQaJ , s3.7d

where once more terms beyond harmonic order have been
neglected and where

Qa = dna −
1

2
s]zua − ]auzd ; dna − Ṽa. s3.8d

As explained above, the director is not a genuine hydro-
dynamic variable and hence it should be integrated out of the
elastic energy as long as we focus on the hydrodynamic
limit. We do so by minimizingH over na to find

na = Ṽa −
D2

D1
uaz+

Mabs=d
D1

SṼb −
D1

D2
ubzD . s3.9d

Inserting this equation intoH and retaining only the domi-
nant terms in gradients, we obtain

Hu–el =E d3xHC1

2
uzz

2 + C2uzzuii +
C3

2
uii

2 + C4uab
2 + C5

Ruaz
2

+
K1

R

2
s]'

2 uzd2 +
K3

R

2
s]z

2uad2J , s3.10d

where

C5
R = C5 −

D2
2

2D1
, s3.11ad
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K1
R =

1

4
S1 +

D2

D1
D2

K1, s3.11bd

K3
R =

1

4
S1 −

D2

D1
D2

K3. s3.11cd

The superscriptR indicates thatC5, K1, and K3 have been
renormalized by director fluctuations. Note that the elastic
constantsK1

R andK3
R are not the same as the Frank splay and

bend constantsK1 and K3. This is in contrast to smectic-A
and columnar liquid crystals in which the coefficients of
quartic gradient terms in the effective elastic energy arising
from the relaxation of director modes are identical to the
Frank elastic constants. The modulusD2 can have either
sign, and there are no thermodynamic constraints preventing
either 1+D2/D1 or 1−D2/D1 from being zero. Thus either
K1

R or K3
R in Eq. (3.11) could be zero. In this case, contribu-

tions tos]'
2 uzd2 or s]z

2uad2 in Hu-el arising from network elas-
ticity would have to be added to ensure stability. Except for
the exceptional cases whenD2= ±D1, those contributions are
generally smaller than the ones represented in Eq.(3.11), and
we will ignore them. IfC5

R vanishes, then the dependence of
the elastic energy onuaz drops out. This is the famous soft
elasticity. If the condition for softness, Eq.(3.11a), is not
strictly fulfilled and there is a small but finite remnantC5

R,
then small shears in the planes containing the anisotropy axis
do cost a small energy. This nonideal behavior is known as
semisoftness.

The energy(3.10) combines attributes of both smectic and
columnar liquid crystals. The vertical displacementuz is
analogous to the displacement variableu of a smectic liquid
crystal. It is soft for distortions in the' direction, and a
bending termK1

Rs]'
2 uzd2/2 is needed to stabilize it. The in-

plane displacementsua are analogous to those of columnar
liquid crystal, which are soft for distortions in thez direction,
and a bending termK3

Rs]z
2uad2/2 is need to stabilize them.

B. Hydrodynamic equations

We are now in a position to write down the full hydrody-
namic equations for nematic elastomers. For simplicity, we
will restrict our attention to isothermal processes so that we
can ignore temperature diffusion. This leaves us with six
hydrodynamical variables, the momentum densitygisxd, and
the displacementuisxd. These are independent variables at
the reference pointx that satisfy the continuum generaliza-
tions of the usual relations for the momentum and displace-
ment of a particle: ]gisxd /]gjsx8d=di jdsx−x8d,
]uisxd /]ujsx8d=di jdsx−x8d, and]gisxd /]ujsx8d=0. These re-
lations yield a nonvanishing Poisson bracket betweenuisxd
andgjsx8d:

huisxd,gjsx8dj = di jdsx − x8d. s3.12d

The g-g andu-u Poisson brackets are zero. Using these re-
sults, we obtain the equations of motion

vi ; u̇i =
dHkin

dgi
=

1

r
gi , s3.13ad

ġi =
dHu-el

dui
+ hi jkl] j]lvk, s3.13bd

wherev is the velocity field andHkin=ed3x/gigi / s2rd is the
coarse-grained kinetic energy.hi jkl is the viscosity tensor,
which has five independent components. We can parametrize
the stress tensor so that the entropy production from viscous
stresses takes on the same form as the elastic energyHu:

TṠ=E d3xHh1

2
u̇zz

2 + h2u̇zzu̇ii +
h3

2
u̇ii

2 + h4u̇ab
2 + h5

Ru̇az
2 J ,

s3.14d

where theh’s are low-frequency viscosities.h5
R is an effec-

tive viscosity that is, as its counterpartC5
R, renormalized by

director fluctuations. Equations3.14d contains all contribu-
tions to the entropy production equation in the truly hydro-
dynamic limit we are considering. Nonhydrodynamic vari-
ables like the director have already relaxed to their local
equilibrium values. Thermodynamic stability requireshi ù0
for i =1,3,4,h5

Rù0, andh1h3ùh2
2.

A few observations about Eqs.(3.13) are in order. First,
they are identical in form to the equations for a conventional
elastic material(without vacancy diffusion). The distinction
between such a material and a nematic elastomer appears
only in the form of Hu-el. The absence of any dissipative
term proportional to −dH /dui in Eq. (3.13a) reflects the teth-
ered or cross-linked character of the elastomer. In non-cross-
linked systems, this equation would contain an additional
dissipative term proportional to −dHu-el/dui describing per-
meation. Second, these equations are expressed in Lagrang-
ian coordinates, and the derivativesu̇ and ġ are time deriva-
tives at constant value of the reference positionx. In Eulerian
coordinates,u andg become functions of pointsr =Rsxd in
space:uEsr ,td=usxsr d ,td and similarly forgE. The time de-
rivative u̇=du /dt=]uE/]t+v ·=uE is the time derivative in
the reference frame moving with the local fluid velocity.

To obtain a more explicit form for the equations of
motion, we note that Eq.(3.13a) allows us to replaceġi in
Eq. (3.13b) with rüi to produce the standard mechanical
equation for a solid with dissipation:

rüa = sC2 + h2]td]auzz+ sC3 + h3]td]auii+ 2sC4 + h4]td]buab

+ sC5
R + h5

R]td]zuaz− K3
R]z

4ua, s3.15ad

rüz = sC1 + h1]t + C2 + h2]td]zuzz

+ sC2 + h2]t + C3 + h3]td]zuii

+ sC5
R + h5

R]td]bubz− K1
R]'

4 uz. s3.15bd

Apart from the appearance ofC5
R, which is zero in a soft NE,

rather thanC5 and bending terms with quartic derivatives,
these equations are identical to those of a uniaxial solid.

Upon switching to frequency space one can see that the
static renormalization of the shear modulusC5, Eq. (3.11a),
has a dynamical generalization with a frequency-dependent
C5

Rsvd=C5
R− ivh5

R, whose real part vanishes whenC5
R=0.

This form for C5
Rsvd is only valid in the hydrodynamic limit

with vt!1. As we will discuss more fully in the next sec-
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tion, there are other terms inC5
Rsvd when this limit is not

obeyed.

C. Sound velocities

To assess the mode structure of the equations of motion
(3.15), we begin with an analysis of propagating sound
modes in the absence of dissipation. To keep arguments
simple, we will restrict ourselves here to ideally soft NE’s
with C5

R=0. When C5
RÞ0, the bending terms can be ne-

glected, and the dynamical equations and associated modes
are identical to those of uniaxial solids. We will return to
case whenC5

R is nonzero in Sec. IV.
The sound modes have frequenciesvsqd=csudq, whereu

is the angle thatq makes with thez axis. The nondissipative
bending terms give rise to modes withv,q2 along the sym-
metry direction. These modes, however, mix with dissipative
ones and become overdamped diffusive modes withv,
−iq2. Thus, to obtain the true nondissipative sound-mode
structure, we can ignore the bending terms. Consequentially,
the nondissipative sound-mode structure is that of a uniaxial
solid with C5=0, which, it turns out, is identical to that of
columnar liquid crystals, though the input variables are
slightly different(there is nouz in a columnar liquid crystal.
but there is an independent density). The modes break up
into displacementsut=«abqaub/q' perpendicular to bothq
and thez axis and coupled displacementsu'=qaua/q' and
uz in the plane that containsq (see Fig. 1). In Fourier space,
the hydrodynamic equations are

rv2ut = C4q'
2 ut, s3.16ad

rv2u' = sC1 + C3dq'qzuz + sC3 + 2C4dq'
2 u',

s3.16bd

rv2uz = sC1 + 2C2 + C3dqz
2uz + sC2 + C3dq'qzu'.

s3.16cd

Thus, there is a transverse sound mode with velocity

ctsud =ÎC4

r
usin uu s3.17ad

that vanishes whenu=0 and reaches a maximum atu=p /2.
The sound velocitiesc1sud andc2sud of the other modes are
coupled and satisfy

c1
2 + c2

2 =
1

r2fs2C4 + C3dsC1 + 2C2 + C3d− sC2

+ C3d2gcos2u sin2u s3.17bd

c1
2 + c2

2 =
1

r2fs2C4 + C3dsin2u + sC1 + 2C2 + C3dcos2ug.

s3.17cd

These equations are identical to the equations satisfied by the
sound velocities in a columnar system[5]. One of the sound
modes is purely longitudinal in the limitC3→`; its velocity
is nonvanishing for allu. The second mode is like that of a
smectic-A liquid crystal [5,29] with a sound velocity that
vanishes atu=0 and u=p /2. The third mode is a purely
transverse sound mode whose velocity vanishes only atu
=0. Figure 2 plots the three sound velocities.

D. Full incompressible mode structure

Having found the general sound-mode structure in the
nondissipative limit, we turn to a full analysis of modes in
the incompressible limit. To discuss this limit, it is useful to
decomposeusqd into a longitudinal partul alongq and com-
ponentsut, perpendicular to bothq andz, anduT perpendicu-
lar to q in the plane containingq andz as shown in Fig. 1.

As was the case in the dissipationless limit,ut decouples
from uT andul. In the incompressible limit,ul vanishes and
we are left with

rv2ut = sC4q'
2 + K3

Rqz
4dut − ivsh4q'

2 + h5
Rqz

2dut,

s3.18ad

FIG. 1. Symmetry directions. Thet direction is perpendicular to
the plane containing the equilibrium directorn0 and the wave vector
q of a generic excitation. TheT direction is perpendicular toq and
the t direction.

FIG. 2. Schematic polar plot(arbitrary units) of the sound ve-
locities ct (solid line), c1 (short-dashed line), and c2 (long-dashed
line).
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rv2uT = FsC1 + 2C4d
q'

2 qz
2

q2 + K1
Rq'

6

q2 + K3
Rqz

6

q2GuT

− ivFsh1 + 2h4d
q'

2 qz
2

q2 +
h5

R

2

sq'
2 − qz

2d2

q2 GuT.

s3.18bd

These equations produce propagating modes with respective
frequencies

vt,± = ±ÎC4

r
uq'u − i

2h4q'
2 + h5

Rqz
2

4r
, s3.19ad

vT,± = ±ÎC1 + 2C4

r

uq'qzu
q

− i
2sh1 + h4dq'

2 qz
2 + h5

Rsq'
2 − qz

2d2

4rq2 , s3.19bd

as long asq is not along a symmetry direction in which the
sound velocity is zero. Whenq'=0, thet andT modes be-
come diffusive with identical frequencies

vt,± = vT,± =
1

4r
f− ih5

R ± Î− sh5
Rd2 + 16rK3

Rgqz
2. s3.20d

As in conventional nematics,K1,K3,10−6 dyn and r
,1 g/cm3. The viscosity should be larger than the0.01 P
characteristic of fluids. Thus we can expect that 16rK3

R

! sh5
Rd2. In this limit the above modes become slow and a

fast diffusive mode with frequencies

vt,s = vT,s = − i
2K3

R

h5
R qz

2, s3.21ad

vt,f = vT,f = − i
h5

R

2r
qz

2. s3.21bd

When qz=0, the t modes remain propagating soundmodes,
but theT modes become diffusive with frequencies

vT,± =
1

4r
f− ih5

R ± Î− sh5
Rd2 + 16rK1

Rgq'
2 , s3.22d

which in the limit 16K1
Rr! sh5

Rd2 to reduce to

vT,s = − i
2K1

R

h5
R q'

2 , s3.23ad

vT,f = − i
h5

R

2r
q'

2 . s3.23bd

Note that there is one pair of diffusive and one pair of
propagating sound modes in the incompressible limit when
qz=0. The attenuation(the imaginary part ofq) of the diffu-
sive modes is proportional toÎv and that of the sound modes
is proportional tov. This is the explanation of the large
difference in attenuation of the two polarizations of trans-

verse waves found by TW[22] that makes NE’s candidates
for acoustic polarizers. We will return to this issue in Sec.
IV C.

Equations(3.21a) and (3.23a) show that one misses the
slow diffusive modes if one neglects the Frank energy. It is a
legitimate question, however, under what conditions these
modes can be observed experimentally. Manifestly, they
should be observable directly in the symmetry directions in
which the respective sound velocities vanish whereas they
should not be seen in directions which differ significantly
from these symmetry directions. Between the two extremes
there will be a crossover from slow diffusive to propagating
behavior at certain crossover angles. These angles can be
estimated by comparing the magnitude of the terms in Eqs.
(3.19) and(3.21a) or, respectively,(3.23a). Foru<0, we get,
for example, from Eqs.(3.19) and(3.21a) that the crossover
is expected at an angleu0 such that

usinu0u <Î r

C4

K3
R

h5
Rq. s3.24d

The wave vectors in light scattering experiments on NE dy-
namics typically have a magnitudeq,105 cm−1. The elastic
moduli C1 and C4 should be comparable to the shear
modulus of rubber,C1,C4,107 dyn/cm2. Hence we es-
timate

usinu0u < 10−4; s3.25d

i.e., the range around the nematic direction in which the slow
diffusive behavior is observable is extremely narrow. Apply-
ing the same reasoning to the slow diffusiveT mode foru
<p /2, we obtain a further crossover angleup/2 with

ucosup/2u < 10−4, s3.26d

signaling the same extremely narrow angle range for slow
diffusive behavior as above.

IV. DYNAMICS WITH DISPLACEMENTS AND DIRECTOR

Nematic elastomers, like their conventional nematic-
liquid-crystal counterparts, are characterized by a Frank di-
rectorn that responds dynamically to external forces. In this
section, we will use the Poisson-bracket approach to derive
phenomenological equations for the dynamics of both the
director and displacements in nematic elastomers. Though
our derivation is different from that of TW, our dynamical
equations are in fact identical to theirs if they include con-
tributions from the Frank free energy for the director. Our
equations also reduce to the standard equations of nemato-
hydrodynamics[33,34] when elasticity due to network cross-
linking is turned off. It must be emphasized, however, that
our equations predict nonhydroydynamic modes character-
ized by a decay timet that does not approach infinity with
vanishing wave numberq. In any real system, there are many
nonhydrodynamic modes with characteristic decay timesta.
For a dynamical theory to provide a correct description of a
system over a frequency range from zero to some maximum
frequencyvM it must include contributions from all modes,
both hydrodynamic and nonhydrodynamic, with characteris-
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tic frequencies up to a few timesvM. An isotropic rubber is
characterized by rather long decay timestR of Rouse-like
modes of chain segments[44]. At frequenciesv such that
vtR!1, its viscosities become frequency independent and it
is described by the hydrodynamical equations of an isotropic
solid. However, whenvtRù1, viscosities develop a non-
trivial frequency dependence and hydrodynamics breaks
down. In our theory for nematic elastomers, we assume that
there is a single director relaxation timet and that it is much
larger thantR so that we do not need to worry about the
frequency dependence of viscosities arising from Rouse
modes. We will, however, point out where these assump-
tions, also made by TW, can be modified. IftøtR, dynamics
at frequenciesvtRù1 will be dominated by Rouse modes,
and it may be difficult to distinguish director relaxation
modes from Rouse modes in experiments in which displace-
ments are probed. The hydrodynamic description of the pre-
ceding section, however, remains valid whenvtR!1.

A. Equations of motion

When we keep the director as a dynamical variable, our
formulation is closely related to nematodynamics. The equa-
tion of motion for the director has a reactive coupling to the
velocity v= u̇ arising from the Poisson bracket ofnisxd with
gjsx8d. This Poisson bracket is generally derived in Eulerian
coordinates[34,45] in which there is a contributionv ·=n to
the equation for]tn. This term can be combined with]tn to
yield the Lagrangian time derivativeṅ. The remaining part
of the Poisson bracket is

hnisxd,gjsx8dj = − li jk]kdsx − x8d. s4.1d

The properties of the tensorli jk are dictated by three con-
straints: First, the magnitude of the director has to be con-
served —i.e.,n ·ṅ=0—implying nili jk =0. Second, the equa-
tions of motion must be invariant undern→−n, implying
li jk must change sign withn. And third, under rigid uniform
rotations, the director has to obeyṅ= 1

2s=3 u̇d3n. The only
tensors and vectors available to use for the construction of
li jk aredi j , ni, and the Levi-Cività antisymmetric tensorei jk
and the only tensors that satisfy the first two conditions
above aredi j

Tnk and dik
Tnj wheredi j

T =di j −ninj. Thus the first
two conditions imply thatli jk has two independent compo-
nents, which can be expressed as parts symmetric and anti-
symmetric under interchange ofj andk:

li jk =
l

2
sdi j

Tnk + dik
Tnkd +

l2

2
sdi j

Tnk − dik
Tnkd. s4.2d

The third condition implies that the coefficientl2 of the
antisymmetric part must be equal to −1. There are no con-
straints on the value ofl, which is equal to the ratio of two
dissipative coefficients of the Leslie-Eriksen theoryf33g.
When its absolute magnitude is positive, it determines the
equilibrium tilt angle of the director under uniform shear
f27g.

Using the Poisson brackets for the director and those for
the momentum density and displacement discussed in the
preceding section, we obtain the equations of motion for a
nematic elastomer:

ṅi = li jk ] ju̇k − G
dH
dni

, s4.3ad

u̇i =
1

r
gi , s4.3bd

ġi = lkji ] j

dH
dnk

−
dH
dui

+ ni jkl ] j] ju̇k. s4.3cd

The first terms on the respective right-hand sides of Eqs.
(4.3a) and(4.3b) as well as the first and second terms on the
right-hand side of Eq.(4.3c) stem from the Poisson brackets.
H is the full elastic energy of NE’s as stated in Eq.(3.1). The
second term on the right- hand side of Eq.(4.3a) is a dissi-
pative term that describes diffusive relaxation. There is no
dissipative contribution to Eq.(4.3b) because NE’s are teth-
ered.ni jkl is a viscosity tensor that has the same structure as
hi jkl . It has five independent componentsn1 to n5. We use
different symbols here for the viscosities than we used in
Sec. III so that we can cleanly keep track of differences
between the two theories.

We have assumed in Eqs.(4.3) that bothG and ni jkl are
local in time or, equivalently, that their temporal Fourier
transforms are independent of frequency as they are at fre-
quenciesv less than their respective inverse characteristic
timestG

−1 andtR
−1. At larger frequencies, however, bothG and

ni jkl do depend on frequency. In polymer gels, storage and
loss moduli are proportional toÎv at frequenciesvtR@1
because of the large number of closely spaced modes which
in turn leads to viscosities proportional to 1/Îv at these
frequencies. Though there are to our knowledge no micro-
scopic calculations ofGsvd, there is no reason why many
closely spaced modes should not lead to Rouse-like behavior
at frequenciesvtG@1. There is also no reason whytG and
tR should not be equal or nearly so. If the decay timet for
the nonhydrodynamic director modes predicted by the the
theory with the low-frequency approximations toG andni jkl
is greater thantR andtG, then this theory provides a correct
description of the dynamics for frequencies
0,v,minstR

−1,tG
−1d includingv,t−1. If, on the other hand,

t,minstR,tGd, the full frequency dependence ofG must be
used for frequenciesv.minstR

−1,tG
−1d. In all cases, however,

the hydrodynamic theory of the preceding section is regained
in the limit v!minst−1,tR

−1,tG
−1d. To keep our discussion

simple, we will continue to assume that bothG andni jkl are
frequency independent. Our equations can, however, incor-
porate the frequency dependence of these quantities merely
by replacing them by their frequency-dependent formsGsvd
andni jklsvd.

At this point, we would like to comment on the precise
relation of Eqs.(4.3) to the equations of nematodynamics.
One retrieves the latter from the former by setting all the
elastic constants inH, except for the Frank constantsK1,K2,
andK3, equal to zero. Thus we are guaranteed to obtain the
well-known modes of nematic liquid crystals in this limit.
One can also make the observation that in this limit Eqs.
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(4.3) depend just onv= u̇ rather than onv andu. If one seeks
modes in terms ofu rather thanv, one finds extra zero-
frequency modes that are spurious.

Next, we condense the equations of motion into a reduced
set of effective equations. We can simplify the subsequent
analysis at the onset by eliminating eitheru or g with help of
Eq. (4.3b). To facilitate in contact with the work of TW we
choose to keepu. For the same reason we opt to work with
Q rather thann. This represents no difficulty sinceQ andn
are simply related via Eq.(3.8). Collecting, we obtain after
some algebra the following effective equations of motion for
Q andu:

hf]t + GD1gdab − GMabs=djQb=fl]t − GD2guaz+ GMabs=dṼb

s4.4ad

r]t
2ua = −

l + 1

2G
]t]zfQa − luazg + fC2 + n2]tg]auzz

+ fC3 + n3]tg]auii + 2fC4 + n4]tg]buab

+ FC5 + n5]t −
D2

2
G]zuaz+

D2 − D1

2
]zQa,

s4.4bd

r]t
2uz = −

l − 1

2G
]t]bfQb − lubzg+ fC1 + n1]t + C2 + n2]tg]zuzz

+ fC2 + n2]t + C3 + n3]tg]zuii+ FC5 + n5]t +
D2

2
G]bubz

+
D1 + D2

2
]bQb. s4.4cd

To make contact with uniaxial solids we now take a brief
detour and consider the simplified caseMabs=d=0. In this
case Eq.(4.4a) is diagonal in frequency space and readily
solved, with the result

Qa = —
D2

D1

1 − ivt2

1 − ivt1
uaz. s4.5d

In writing Eq. s4.5d we have used the relaxation timestt
=1/sGD1d and t2=−l / sGD2d. Heret1<10−2 s f1,41,42g is
essentially the relaxation time of the director. Pure hydro-
dynamic behavior is obtained when bothvt1 and vt2 are
much less than 1 as our calculations will verify. In terms
of the relaxation times,l is given by l=−t2D2/ st1D1d.
Note thatl is usually negative, but if it is positive, there
no inconsistencies arising from a negativet2.

Inserting expression(4.5) into the timewise Fourier-
transformed equations of motion forua anduz, we obtain

− rv2ua = C2svd]auzz+ C3svd]auii + 2C4svd]buab

+ C5
Rsvd]zuaz, s4.6ad

− rv2uz = fC1svd + C2svdg]zuzz+ fC2svd + C3svdg]zuii

+ C5
Rsvd]bubz, s4.6bd

with C1svd=C1− ivn1, C2svd=C2− ivn2, etc., and

C5
Rsvd = C5 − ivSn5 +

l2

2G
D −

D2
2

2D1

s1 − ivt2d2

s1 − ivt1d

=C5
R − ivn5

R + Osv2d, s4.7d

where

n5
R = n5 +

l2

2G
S1 −

t1

t2
D2

. s4.8d

Note that Eqs.s4.6d are identical in form to Eq.s3.15d for
uniaxial solids withK1

R=K3
R=0. Note also that we can iden-

tify h1=n1 and so on. Indicating the consistency of our two
approaches, we can identify the renormalized viscositiesh5

R

andn5
R. As pointed out earlier, Rouse modes will be impor-

tant for vtRù1 andvtG@1, leading to a frequency depen-
dence of the viscosities. In this regime we have to letni
→nisvd andG→Gsvd. For vtR@1 andvtG@1, in particu-
lar, the viscosities are proportional to 1/Îv f44g.

Before we move on we point out that Eqs.(4.4) become
identical to the equations of motion by TW if we take the
incompressible limit and if we neglect the Frank energy, pro-
vided, of course, that we take into account that somewhat
different conventions are used and provided that correspond-
ing quantities are identified properly. A detailed comparison
to TW at the level of final results for the modes will be given
in Sec. IV C.

B. Mode structure

1. t direction

By applying «baqb (including the summation overa) to
both sides of the Fourier-transformed version of Eq.(4.4a)
we obtain a diagonalized equation of motion forQt that is
readily solved with the result

Qt = −
D2

D1

1 − ivt2 + q2Kt/D2

1 − ivt1 + q2Kt/D1

1

2
iqzut, s4.9d

where we have used the abbreviated notation

q2Kt = K2q'
2 + K3qz

2. s4.10d

Application of the same procedure to Eq.s4.4bd yields

− v2rut =
l + 1

2G
ivqzFiQt +

l

2
qzutG − C4svdq'

2 ut

+
D2 − D1

2
iqzQt −

1

2
FC5svd −

D2

2
Gqz

2ut.

s4.11d

ut is a purely transverse displacement that does not couple to
any displacement in the plane containingq. As a result, the
elastic constantsC2 and C3, which couple toul, do not ap-
pear in this equation of motion.
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Next, we insert Eq.(4.9) into (4.11), which gives an ef-
fective equation of motion forut alone. This equation of
motion has solutions withutÞ0 for frequencies satisfying
the secular equation

Fv2r − C4svdq'
2 +

lsl + 1div − lt2
−1 − 2GC5svd

4G
qz

2G
3D1f1 − ivt1 + q2Kt/D1g+

l + 1 −t1
−1 − lt2

−1

4G

3qz
2D2f1 − ivt2 + q2Kt/D2g = 0. s4.12d

Evidently, this secular equation is too complicated to find
useful closed solutions forv. However, since we are inter-
ested in the long-wavelength behavior, we can perturbatively
determine solutions in the form of a power series in the wave
vector.

Let us first consider the simplified case of vanishingC’s
andD’s. In this case we obtain as expected the well-known
slow and fastt direction modes of nematic liquid crystals:

vt,s = − ifK2q'
2 + K3qz

2gHG +
s1 + ld2qz

2

2sn5qz
2 + 2n4q'

2 dJ ,

s4.13ad

vt,f = − i
2n4q'

2 + n5qz
2

2r
, s4.13bd

as well as the previously announced spurious zero-frequency
mode. In writing Eqs.(4.13) we have considered as usual the
limit KrG /n!1, whereK stands symbolically for all the
Frank constants andn stands ambiguously for all the viscosi-
ties. In comparing Eqs.(4.13) and (4.19) to the original re-
sults on nematic liquid crystals as given in Ref.[33] one
should be aware of slight differences in the notations. If we
wish to use the notation of Ref.[33], we have to replace, in
Eqs. (4.13), G→g−1, n1→2n1, n4→n2, n5→2n3, q'→q1,
andqz→q3.

Now to the full secular equation(4.12). Solving this equa-
tion perturbatively leads also to three modes—namely, one
massive mode and two propagating modes. The massive
mode has the frequency

vt,m = it1
−1 − iGfK2q'

2 + K3qz
2g + i

n5
R − n5

2r
qz

2. s4.14d

Note that Eq.s4.14d does not depend onC5
R. Hence this mode

is shared by soft and semisoft NE’s. As long as the sound
velocities of the soft modes are finite, their frequencies are

vt,± = ±Î2C4q'
2 + C5

Rqz
2

2r
− i

2n4q'
2 + n5

Rqz
2

4r
, s4.15d

in full agreement with Eq.s3.19ad whenC5
R=0 and the iden-

tifications n4=h4 and n5
R=h5

R are made. For soft NE’s the
soft t modes become diffusive ifq'=0. The frequencies of
these diffusive modes are easily identified with those given
in Eqs.s3.20d and s3.21d.

2. T direction

Except for thet direction, an analysis of the modes is
prohibitively complicated unless one resorts to the incom-
pressible limit. In this limitC3=` andul =0, and as a result,
C2, C3, n2, andn3 do not appear in the equations of motion
for uT.

We need the equations of motion for the' direction as
intermediate results for studying theT direction. Applyingqa
(including the summation overa) to the Fourier-transformed
counterparts of Eqs.(4.4a) and (4.4b), we obtain

Q' = −
D2

D1

1 − ivt2 + q2K'/D2

1 − ivt1 + q2K'/D1

1

2
iq'uz

−
D2

D1

1 − ivt2 − q2K'/D2

1 − ivt1 − q2K'/D1

1

2
iqzu', s4.16ad

− v2ru' =
l + 1

2G
ivqzFiQ' +

l

2
sq'uz + qzu'dG

− 2C4svdq'
2 u' +

D2 − D1

2
iqzQ'

−
1

2
FC5svd −

D2

2
Gqzsq'uz + qzu'd,

s4.16bd

where we have used the shorthand

q2K' = K1q'
2 + K3qz

2. s4.17d

In addition to Eqs. s4.16d we also need the Fourier-
transformed version of Eq.s4.4cd in the incompressible limit:

− v2ruz =
l − 1

2G
ivq'FiQ' +

l

2
sq'uz + qzu'dG

− C1svdqz
2uz +

D1 + D2

2
iq'Q'

−
1

2
FC5svd +

D2

2
Gq'sq'uz + qzu'd. s4.18d

Next, we set up an equation of motion foruT that depends
on u', uz, andQ'. Then we eliminateQ' with help of Eq.
(4.16a). Finally, we exploit that u'=−qzuT/q and uz
=q'uT/q in the incompressible limit. These steps provide us
with an effective equation of motion foruT alone. In order to
allow for solutionsuTÞ0 the frequencies have to satisfy a
condition analogous to Eq.(4.12). We opt not to write down
this secular equation here because it is rather lengthy and
because it can be obtained in a straightforward manner from
the ingredients given above.

We proceed as above and first consider the simplified case
of vanishingC’s andD’s. As anticipated, we obtain a spuri-
ous zero-frequency mode as well as the slow and fastT
direction modes of nematodynamics:
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vT,s = − ifK1q'
2 + K3qz

2g

3HG +
fq2 − lsq'

2 − qz
2dg2

2n5sq'
2 − qz

2d2 + 4sn1 + 2n4dq'
2 qz

2J ,

s4.19ad

vT,f = − i
2sn1 + 2n4dq'

2 qz
2 + n5sq'

2 − qz
2d2

2rq2 , s4.19bd

whereKrG /n!1 is implied.
By perturbatively solving the full secular equation we ex-

tract the threeT direction modes for NE’s. We find one mas-
sive mode

vT,m = − t1
−1 − iGfK1q'

2 + K3gqz
2 + i

n5
R − n5

2r

sq'
2 − qz

2d2

q2

s4.20d

and two soft modes. For nonvanishing sound velocities the
soft modes have frequencies

vT,± = ±Î2sC1 + 2C4dq'
2 qz

2 + C5
Rsq'

2 − qz
2d2

2rq2

− i
2sn1 + 2n4dq'

2 qz
2 + n5

Rsq'
2 − qz

2d2

4rq2 . s4.21d

WhenC5
R=0 this result reduces, provided that the viscosities

are properly identified, to Eq.s3.19bd. In the case of ideal
soft elasticity the sound velocities vanish ifq'=0 or qz=0.
For q'=0 the frequencies of the then diffusiveT modes are
identical to those for the diffusivet modes; see Eqs.s3.20d
and s3.21d. For qz=0 we retrieve Eqs.s3.22d and s3.23d.

C. Comparison to TW

Now we compare our findings to those by TW. First, we
will demonstrate that our equations of motion(4.4) are iden-
tical to the equations of motion by TW if we restrict our-
selves to the incompressible limit and if we neglect the Frank
energy. Second, we will compare our final results for the
modes to those found by TW. Of course, we must take into
account differences in conventions and notations in these
comparisons. For guidance in identifying the corresponding
quantities, see Table I.

In order to compare our equations of motion(4.4) to the
equations of motion by TW we rewrite Eqs.(4.4b) and(4.4c)
as

− r]t
2ui = ] jsi j , s4.22d

where thesi j are the components of the stress tensors=. The
specifics of thesi j are easily gathered from Eqs.s4.4bd and
s4.4cd:

sab = 2fC4 + n4]tguab, s4.23ad

szz= fC1 + n1]tguzz, s4.23bd

saz= FC5 + n5]t −
D2

2
+

lsl + 1d
2G

]tGuaz

+
1

2
FD2 − D1 −

l + 1

G
]tGQa, s4.23cd

sza= FC5 + n5]t +
D2

2
+

lsl − 1d
2G

]tGuaz

+
1

2
FD2 + D1 −

l − 1

G
]tGQa, s4.23dd

where we have taken the incompressible limit. Equations
(4.23) show clearly thats= is not symmetric and that its an-
tisymmetric part is

saz− sza=
1

G
hft1

−1 + ]tgQa − lft2
−1 + ]tguazj = Mabs=dV̂b,

s4.24d

where we have used Eq.s4.4ad to obtain the last equality.
Equations4.24d reveals that the stress tensorsi j defined in
Eqs.s4.23d is symmetric only when the Frank energy can be
ignored. Of course, when the Frank energy is included, it is
always possible, following the procedures in Refs.f33g and
f34g, to define a symmetric stress tensorsi j

S yielding the
same equations of motion assi j .

If we neglect the Frank energy, our stress tensor becomes
identical to the symmetric stress tensor used by TW provided
that we take into account Table I. Moreover, as can easily be
checked, Eq.(4.4a) becomes identical to the balance of
torques equation under these circumstances. Therefore, our
equations of motion(4.4a), (4.4b), and(4.4c) are equivalent
to the equations of motion by TW provided that we take the
incompressible limit and neglect the Frank energy.

At this point it is interesting to compare the stability con-
ditions which are implicit in the dissipation function. Our

TABLE I. Correspondence between quantities used by TW and
quantities used in our work.

TW This paper TW This paper

2C1 C1 2A4 n4

2C2 C2 4A5 n5+l2/ s2Gd
2C3 C3 g1 1/G

2C4 C4 g2 −l /G

4C5 C4 v −v

2A1 n1 u1 Q2

2A2 n2 u2 −Q1

2A3 n3 C5
Rsvd Ĉ5

Rsvd
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equations imply in the incompressible limit thatn1ù0, n4
ù0, andn5ù0. While the first two conditions can be readily
identified with the conditionsA1ù0 andA4ù0 in the work
of TW, the situation is less obvious for the last condition.
Note, however, that we can reexpressn5ù0 in terms of the
quantities used by TW as

n5 = 4A5 −
g2

2

2g1
ù 0, s4.25d

which has an identical counterpart in the work of TW. Stated
in terms of the relaxation times, this condition requires that

t1tR ù t2
2 s4.26d

for ideally soft NE’s.
Next, we come to the comparison of the results for the

modes. Our first observation is here that the massive modes
vt,m andvT,m are unaccounted for by TW. Note that the soft
modes in thet andT directions are referred to in TW as qSH
waves and qSV waves, respectively.

Let us first compare the findings regarding thet direction.
To foster this comparison we recast our result(4.15) as

v2 =
1

2r
f2C4svdq'

2 + C5
Rsvdqz

2g. s4.27d

To the order we are working—i.e., to orderOsq3d—solutions
to Eq. s4.27d and ourvt,m coincide. Note that Eq.s4.27d is
essentially identical to thet direction secular equation for
uniaxial solids. This can easily be checked by starting with
Eq. s4.6ad and by then switching to thet direction.

To make further contact with TW we eliminate the vis-
cosities in Eq.(4.27) in favor of the relaxation timetR
<n1/C1< ¯ <n5/C5<fn5+l2/ s2Gdg /C5. The subscriptR
indicates thattR<10−5–10−6s is of the order of the Rouse
time of the polymers constituting the rubbery matrix. We
obtain

v2 =
1

2r
f2C4q'

2 + Ĉ5
Rsvdqz

2gs1 − ivtRd, s4.28d

where

Ĉ5
Rsvd =

C5
Rsvd

1 − ivtR
= C5 −

D2
2

2D1

s1 − ivt2d2

s1 − ivt1ds1 − ivtRd
.

s4.29d

Taking into account Table I, we see that ourĈ5
Rsvd is iden-

tical with the renormalized form ofC5 found by TW and that
Eq. s4.29d is in full agreement with the dispersion relation of
TW for the qSH waves.

Now to theT direction. To orderOsq3d our results forvT,±

coincide with the solutions of

v2 =
1

2r
FfC1svd + 2C4svdg

q'
2 qz

2

q2 + C5
Rsvd

sq'
2 − qz

2d2

q2 G .

s4.30d

Note that Eq.s4.30d is essentially identical to theT direction
secular equation for conventional uniaxial solids. TW con-
sidered theT modes only forqz=0. For qz=0, Eq. s4.30d
reduces to

v2 =
1

2r
Ĉ5

Rsvdq'
2 s1 − ivtRd. s4.31d

Using Table I, we find that Eq.s4.31d is in full agreement
with the result of TW for the qSV waves.

Before summarizing our findings, we now briefly return
to the property NE’s that makes them, as pointed out by TW,
candidates for acoustic polarizers—viz., the large difference
in attenuation between thet and T modes in the symmetry
direction whereqz=0. For thet direction it follows immedi-
ately from Eq.(4.28) that the attenuation is proportional tov
if C5

R=0 and qz=0. Equation(4.31) has two solutions for
C5

R=0—namely, v=0 and, with the proper identifi-
cation,n5

R=h5
R, the fast diffusive mode in Eq.(3.23b). If the

Frank energy is taken into account, thev=0 mode becomes
the slow diffusive mode of Eq.(3.23a). Due to their diffu-
siveness, the attenuation of theseT modes is proportional to
Îv and hence much larger for low frequencies than the at-
tenuation of the propagatingt mode. This large difference in
attenuation can be used, in principle, to split theT modes
from the t modes.

V. SUMMARY

Nematic elastomers exhibit the remarkable phenomenon
of soft or semisoft elasticity in which the effective shear
modulusC5

R for shears in planes containing the anisotropy
axis, respectively, vanishes or is very small. In this paper, we
have explored the dynamical consequences of this elasticity.
We derived dynamical equations, involving only the dis-
placement, valid in the hydrodynamic limit in which fre-
quencies and wave numbers are, respectively, small com-
pared to all characteristic microscopic inverse times and
lengths in the system, and we determined that their mode
structure is identical to that of columnar liquid crystals in the
soft limit whenC5

R=0. We also used the Poisson-bracket ap-
proach to derive dynamical equations, which contain nonhy-
drodynamic modes, for both director and displacement and
verified that they reduced to those derived by Terentjev,
Warner, and co–workers[1,22] when contributions from the
Frank free energy can be ignored. We analyzed the mode
structure of these equations assuming a single relaxation
time for the director, which we took to be longer than any
other characteristic decay time such as the Rouse timetR.
Our equations, however, permit the introduction of
frequency-dependent dissipative coefficients valid at fre-
quencies higher than these inverse decay times.

Rheological experiments at zero wave number have
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reported frequency-dependent storage and loss moduli that
are in agreement with the predictions of the semisoft theory
that includes the director[18]. It would be interesting to map
out the modes of nematic elastomers directly using light scat-
tering. It may, however, be difficult to access the true hydro-
dynamic limit because it applies in current NE’s only for
frequencies of order 100 Hz or less and because inherent
sample inhomogeneities may lead to extra scattering that

could mask the signals of the characteristic modes of a ho-
mogeneous system.
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