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Dynamics of nematic elastomers
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We study the low-frequency, long-wavelength dynamics of soft and semisoft nematic elastomers using two
different but related dynamic theories. Our first formulation describes the pure hydrodynamic behavior of
nematic elastomers in which the nematic director has relaxed to its equilibrium value in the presence of strain.
We find that the sound-mode structure for soft elastomers is identical to that of columnar liquid crystals. Our
second formulation generalizes the derivation of the equations of nematohydrodynamics by dtcabter
nematic elastomers. It treats the director explicitly and describes slow modes beyond the hydrodynamic limit.
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I. INTRODUCTION systems in which nondissipative forces are calculated as de-

Nematic elastomersNE's) [1-4] are rubbery materials rivatives of an energy functional and dissipative forces as
with the macroscopic symmetry properties of nematic quuid]fjer“""‘t"’es.Of a.IRaer|§k;]h dlﬁSlF}&tlpn Ifuncnon. The TW ;’]V ork
crystals[5,6]. In addition to the elastic degrees of freedom of '0CUSES pn:‘narl)’/ on the rheological response in IbOt soft

ordinary rubber, nematic elastomers possess the internal, offd semisoft NE's at zero wave number, and it neglects con-

entational degree of freedom of liquid crystals. Since NE'stributions to dynamical equations arising from the Frank free

are amorphous solids rather than fluids, their mechanicdin€rgy for director distortions, which are higher order in

roperties differ significantly from those of standard nematic'3V€ number than those arising from network_elast_icity. AS a
brop 9 y result, as we shall see, the mode structure derived in Réfs.

liquid crystals. The interplay between elastic and orienta- nd[22] misses diffusive modes along symmetry directions
tional degrees of freedom is responsible for several fascinat- g sy Y

ina properties of NE's. For example. temperature change ob soft NE’s. When contributions from the Frank free energy
INg prop: : ample, P 9€ OLre included and those from the elastic network are excluded,
illumination can change the orientational order and cause th e TW approach reproduces the original Leslie-Ericksen

elastomer to _extend or contract by several hundred Perceyuations[26,27 of nematodynamics, excluding the rota-
[7-9. Nematic elastomers display a soft elastidi0-13  {ional inertial term that is usually discardg2s], or is miss-
characterized by vanishing shear stresses for a range of |0ﬂ1g entirely in alternative derivation§] of these equations.
gitudinal strains applied perpendicular to the nematic direc- "|n this paper, we will present alternative approaches to
tion. They exhibit an anomalous elasticity in which Certainderiving the equations governing the dynamics of NE's.
bending and shear moduli are length-scale dependent arfdrst, we will derive the exclusively hydrodynamical equa-
vanish or diverge at long length scalgl-1§. tions for those variables whose characteristic frequencies
In addition to unusual static properties, NE’'s have an in-vanish with wave number. These equations, like those for the
triguing dynamic mechanical behavior. Early rheology ex-hydrodynamics of smecti¢5,29 and columnar[5] liquid
periments on liquid crystalline elastomef$7] found no  crystals, exclude nonhydrodynamic director modes. Interest-
nematic effects in NE’s. Later, however, several experimentingly, the modes for soft NE’s predicted by these equations
[18-21 observed a genuinely unconventional response t@re identical in form to those of columnar liquid crystgi$
oscillatory shear. It turns out that an internal relaxation of thewith three pairs of sound modes and diffusive modes along
nematic director leads to a dynamic mechanical softening afymmetry directions where sound velocities vanish. One pair
NE's. This behavior has been named dynamic soft elasticityof sound modes is predominantly longitudinal with nonvan-
It makes NE's interesting for device applications in areasshing velocity at all angles. A second pair is predominantly
such as mechanical vibration dampifitf] (exploiting the transverse with a velocity that vanishes for wave vector ei-
fact that the mechanical loss is record high over a wide rangther parallel or perpendicular to the uniaxial symmetry axis,
of temperatures and frequengies acoustics where NE's and a third pair is completely transverse with a velocity that
open the possibility of acoustic polarizatipp2] (using the  vanishes for wave vector parallel to the symmetry axis, but is
fact that only particular soft shears are strongly attenyatedhonzero otherwise. We then derive the phenomenological
analogous to the optical polarization in birefringent media. equations for the slow dynamics of all displacement and di-
The theoretical investigation of the dynamic-mechanicalrector variables in NE’s using the Poisson-Bracket formalism
properties of NE's was pioneered by Terentjev and Warnef30,3]] for obtaining the dynamics of coarse-grained vari-
(TW) and co-workerg1,18,22—24. Reference$l] and[22] ables, applied so successfully to the study of dynamical criti-
present a detailed derivation of equations governing theal phenomend32], for deriving phenomenological equa-
long-wavelength, low-frequency dynamics of NE's and de-tions for any set of coarse-grained variables whose dynamics
rive their associated mode structure, which includes nonhyis slow on a time scale set by microscopic collision times.
drodynamic, rapidly decaying modes. This derivation, whichLike TW, we assume a single relaxation time for the director.
assumes a single relaxation time for the director, is based owe do, however, discuss how this constraint can be relaxed.
the Lagrangian approadR5] to the dynamics of continuum When applied to fluid nematic liquid crystals, the Poisson-
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bracket formalism is equivalent to that used by Forstesl.  the components of the so-called dissipative tensor. This ten-

[33,34 in their derivation of the hydrodynamics of nematics. gor couplesb,, to 51/ 8, only if @, and®, have the same
Our dynamical equations for NE's reduce to the equations ofjgn under time reversal. If the noise tetfis present, Eq.
nematohydrodynamics derived by Forsé¢ral. when elastic  (2.1) represents a stochastic or Langevin equation. As such,
rIgIdItIeS vanish and to the purely hydl’odynamiCS equati0n$q_ (21) may be used to set up a dynamic funcud:[%_4q

for NE’s when fast modes are removed. When contributiongg study the effects of nonlinearities and fluctuations via dy-
from the Frank free energy are ignored, our equations argamijcal field theory. In this paper we are not interested in
identical to those derived by TW. We will not discuss randominese effects. Hence we focus on linearized hydrodynamic

stresses or inhomogeneities in this paper, though they corguations and pay no further attention to noise.
tribute static components in light scattering experim¢8ts

that may obscure the observation of the NE modes we dis-
cuss here. Ill. PURE HYDRODYNAMICS

The outline of our paper is as follows. In Sec. Il we  Hydrodynamics describes the dynamics of those degrees
b”eﬂy reVieW the genel’al Poisson'bracket fOI’ma|ism fOI’ Ob'of freedom Whose Characteristic frequenciﬁsvanish as
taining coarse-grained dynamics. Section Ill focuses on thave number tends to zero. In other words, hydrodynamics
pure hydrodynamics of NE's. We set up equations of motiorfocyses exclusively on théeading low-frequency, long-
for the momentum density and elastic displacement. We deyavelength behavior. All other degrees of freedom, even
rive the appropriate elastic energy entering these equationgough they might be slow, are, strictly speaking, not hydro-
by integrating out the director degrees of freedom. Then Weyynamic ones. In this section we will derive the hydrody-
compare the hydrodynamic equations to those of convemamic equations of NE’s. These equations apply for frequen-
tional uniaxial solids and columnar liquid crystals. After ex- cies » such that wr<1, where 7 is the longest
tracting the sound velocities of the modes, we finally deternonhydrodynamic decay time in the system. As we will show
mine the full mode structure in the incompressible limit. jn the next section, the characteristic time for director decay
Section IV features our formulation that explicitly accountsis in fact very slow withr~ 102 s[41,49 so that the regime
for the dynamics of the director. We set up equations ofsf applicability of hydrodynamics is quite small for current
motion for the momentum density, elastic displacement, an(g's. |t is imaginable, however, that other systems will be
director. These are then compared to the equations of motiogyynd with shorter decay times.
fOI‘ Uniaxial SOIidS. We determine the mode structure. Fina”y, There are two genera| C|aSSeS Of hydrodynamic Variab'es:
we compare our results to the results obtained by TW. Abriegonserved variables and broken-symmetry variables. A
summary is given in Sec. V. single-component NE has the same set of conserved vari-
ables as a fluid: energy densigymass densityp, and mo-
mentum densityg. It also has the same broken-symmetry
variables as a crystalline solid—namely, three displacement

Stochastic dynamical equations for coarse-grained field¥ariables—though, strictly speaking, these variables in an
[31,37 can be obtained by combining the Poisson-brackeglastomer are not associated with a macroscopic broken sym-
formalisms of classical mechanif25], which guarantees the Mmetry because in the absence of orientational order elas-
correct reactive couplings between fields with opposite sign§omers have the same macroscopic rotational and transla-
under time reversal, and the LangeyB6] approach to sto- tional symmetry as a fluid. Since it is rotational symmetry
chastic dynamics, which provides a description of dissipativdhat distinguishes a nematic elastomer from an isotropic one,
processes and noise forces. l®L(x,t), ©u=1,2,..., be a it could bg arguled that the ngmatic d!rector should be a hy—
set of coarse-grained fields whose statistical mechanics @rodynamic variable, but as in smectic and columnar liquid
described by a coarse-grained Hamilton#nThe dynami- crystals, the director degrees of freedom decay in micro-

cal equations forb,,(x,t) are first-order differential equa- scopic times to their preferred configuration in the presence
tions in time: of strain and are thus not hydrodynamic variables. Elas-

tomers differ from equilibrium crystals in at least two impor-
: B s , L tant ways: The first, alluded to above, is that they are not
() == [ d% | dt{®,(x,1),P,(x",t )}5(13 X' 1) periodic and thus do not have mass-density wave order pa-
Y rameters whose phases act as broken-symmetry hydrody-
namic variables; rather, Lagrangian displacement variables
take their place. The second is that an elastomer is perma-
) ) ) ] ] nently cross-linked: it is a classical rubber in which changes
Here and in the following the Einstein summation conven-s, in‘mass density are locked to changes in volume such that
tion is understood. The first term on the right-hand side is @p/p=-V -u and in which permeation in which there is
nondissipative velocity, also known as the reactive term, thafyansiation of a mass-density wave without mass motion is
contains the Poisson bracké®,(x,t),®,(x",t")} of the  yronibited. Thus mass density is not an independent hydro-
coarse-grained fields37]. The reactive term couple®, to  dynamic variable, and we are left with a total 5f3-1
6H16D, only if &, and®, have opposite signs under time =7 independent variables and 7 associated hydrodynamic
reversal(when external magnetic fields are zgrdhe sec- modes. These modes are heat diffusion and, depending on
ond term on the right-hand side is a dissipative tdrij), are  direction, either six propagating sound modes, four propagat-

II. COARSE-GRAINED DYNAMICS

oH
—me+§#(x,t). (2.1
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ing sound modes and two diffusive displacement-velocityelasticity of NE's[14,15], the elastic constants in E¢B.2)
modes, or two longitudinal sound modes and four diffusivehave a somewhat different definition that is geared towards
displacement-velocity modes. In what follows, we will con- taking the incompressible limit. Here we have arranged
sider only isothermal processes so that heat diffusion can bhings so that the terms featuri andCs involve the trace
ignored. of the strain tensor. In the incompressible limit that we will
eventually take one hag; =0 so thatC, andC; drop out.
A. Elastic energy Expanded to harmonic order in the deviatiGn=n-ng

To derive the hydrodynamical equations for NE's, we firstf:%)argsthe uniform equilibrium stateo=¢, the Frank energy

need the appropriate elastic free energy. The elastic constals

measuring the energy of strains in planes containing the an-

: : od i - gl K 2, Ko 2, Ks 2

isotropy axis[the shear modulu€s to be defined in Eq. Hm—fd X{?(ﬁaéha) +?(8ab&aéhb) +?(0zéha) }

(3.2)] vanishes as a result of the broken symmetry brought

about by the establishment of nematic order. Thus a good (3.9

starting point for this free energy is that of a uniaxial solid . . ) A

with this elastic constant simply set to zero. This leaves cerWhereea= -y, is the two-dimensional Levi-Civita symbol.

tain soft directions in which distortions cost zero energy, and-Or notational simplicity in the remainder of this paper, we

as in smectic and columnar liquid cryst&f, curvaturelike ~ Will replace on by n with the understanding that it has only

terms that are quadratic in second-order spatial derivative®/0 components,. With this notationH 5, can be expressed

have to be added to ensure stability. To make contact wit@S

dynamical equations involving the director to be presented in

Sec. IV, rather than simply adding these terms, we find it Hgn = _lf a3 M (V) (3.5

useful to derive them from the free energy of a nematic elas- 2

tomer expressed in terms of both the strain and directors. We

will restrict our attention to harmonic distortions. where
Elastomers are permanently cross-linked pieces of rubber _ >

whose static elasti(?ity is most )éasily describe%l in Lagrangian Map = (Ky = Ko)dadh + (Koo, + Kad?) Sap (3.6)

coordinates in whiclx labels a mass point in the unstretched 5, whereﬁ:aa&a with the Einstein convention understood.

(referencg material andR(x)=x+u(x), whereu(x) is the The coupling energy, finally, can be written in the form
displacement variable, labels the position of the mass point

in the stretchedtarge) material. We will use Lagrangian 2 ) D1 o

coordinates throughout this paper. We will, however, on oc- Hun= f d>x ?Qa"' Dau,Qa (3.7

casion make reference to Eulerian coordinates in which
=R(x) specifies a position in space andr) the displace- \where once more terms beyond harmonic order have been
ment variable at that position. neglected and where

The elastic energy of a nematic elastomer can be divided

into three parts: 1 ~
P Q= o= S (0Ma=3a) = ong =D (39

H=Hy+Hn+Hyn, (3.9

As explained above, the director is not a genuine hydro-
dynamic variable and hence it should be integrated out of the
elastic energy as long as we focus on the hydrodynamic
limit. We do so by minimizing over n, to find

whereH,, is the usual elastic energy of a uniaxial solid,

is the Frank free energy of a nematic, &g, is the energy

of coupling between strain and director distortions.
Choosing the coordinate system so that thdirection

coincides with the uniaxial direction, we have, to harmonic - D, My(V)[~ D
order[43], n,=Q,— D—luaZ aD—l(Qb_ D_zubz>' (3.9
— 3 & 2 % 2 2 2 . . . . .. .
Hy=| d% 5 Uzz* Couz i + o Uit Cauzp+ Csly, [ - Inserting this equation intd{ and retaining only the domi-

nant terms in gradients, we obtain
3.2

Here u; are linearized components of the Lagrange strain Hu_e|:fd3x{%uiz+ Col, ;i + %uﬁ+c4u§b+ CRUZ,
tensoru:

KR KR
1 by 3
Uy = (U + 9. (3.3 + (AU 23(«7§ua)2}, (3.10

We will use the convention that indices from the beginningwhere
of the alphabet{a,b}) assume the values 1 and 2 whereas

2
indices from the middle of the alphabgt,j,k,I}) run from CR=(C. - D2 (3.113
1 to 3. Note that, compared to our work on the anomalous 5T 2D,’
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1(, D,)\? SH
KR:—<1+—2) Ky, 3.11 g = —2 4 ik 3.13
174 D, 1 ( b i U ik 9jo1UK, ( b
1 D.\2 wherev is t.he velpcity field and{kiq:fd3x/gigi/(2p) is the
K§=Z<1—D—2> Ks. (3.119  coarse-grained kinetic energys, is the viscosity tensor,
1

which has five independent components. We can parametrize
The superscripR indicates thaCs, K,, and K5 have been the stress tensor so that the entropy production from viscous
renormalized by director fluctuations. Note that the elastiSresses takes on the same form as the elastic eftegy
constantK T andK® are not the same as the Frank splay and 7. . _ '

bend constant¥; and K. This is in contrast to smectic-A ~ TS= f d3x ?ufz+ U, Al + Euﬁ + U2, + RS, ¢

and columnar liquid crystals in which the coefficients of

quartic gradient terms in the effective elastic energy arising (3.19

from the relaxation of director modes are identical to the , ; R
Frank elastic constants. The modulDs can have either where thes's are low-frequency viscositiesss is an effec

sign, and there are no thermodynamic constraints preventin%iéﬁfﬁ'gut:t?;r:z’ ?ES S:ts)ofgnizr%fgiz;igogw?:l(l)znetfilbt:i
either 14D,/D; or 1-D,/D4 from being zero. Thus either - = '

KR or KR in Eq. (3.11) could be zero. In this case, contribu- tions to the entropy production equation in the truly hydro-

tions to(aiuz)z or (ﬁfua)z in ‘H,,., arising from network elas- dynamic limit we are considering. Nonhydrodynamic vari-

. . les like the dir r have alr relax heir local
ticity would have to be added to ensure stability. Except forab es like the director have already relaxed to their loca

. T equilibrium values. Thermodynamic stability requirgs=0
the exceptional cases whé&n=+D,, those contributions are foqr i=1.3 4. ,R=0. and i 2 y requis
generally smaller than the ones represented in&q1), and S0 15 =y STIE L= T2

o . A few observations about Eq&3.13 are in order. First

R L
we will Ignore them. IfC5 vanishes, thgn.the dependence 0fthey are identical in form to the equations for a conventional
the elastic energy on,, drops out. This is the famous soft

- az . elastic materialwithout vacancy diffusion The distinction
elastu:ny. !f the condmon_for sofiness, E_(f_s.lla), IS not between such a material and a nematic elastomer appears
strictly fulfilled and there is a small but finite remna@g,

. - : only in the form of H,. The absence of any dissipative
then small shears in the planes containing the anisotropy axis proportional to SH/ 8y in Eq. (3.133 reflects the teth-
do cost a small energy. This nonideal behavior is known a: !

. ®red or cross-linked character of the elastomer. In non-cross-
semisoftness.

: : . linked systems, this equation would contain an additional
The ene_rg;(_S.l(» combines attnbL!tes Of. both smectu_: and dissipative term proportional toéH,,..// ou; describing per-
columnar liquid crystals. The vertical displacemant is

| 1o the displ t variablef tic liquid meation. Second, these equations are expressed in Lagrang-
analogous to the displacement variaplet a Smectic liqui ian coordinates, and the derivativeandg are time deriva-
crystal. It is soft for distortions in thelL direction, and a

; . o ~  tives at constant value of the reference positiom Eulerian
bending termK{(¢* u,)?/2 is needed to stabilize it. The in- b

| disol | h ¢ col coordinatesy andg become functions of points=R(x) in
plane disp acem_enusa are analogous _to 1 0S€ Of columnar spaceug(r,t)=u(x(r),t) and similarly forge. The time de-
liquid crystal, which are soft for distortions in tlzedirection,

. R 2rm I rivative U=du/dt=dug/dt+v- Vug is the time derivative in
and a bending terr(3(%u,)*/2 is need to stabilize them. the reference frame moving with the local fluid velocity.

To obtain a more explicit form for the equations of
B. Hydrodynamic equations motion, we note that Eq.3.139 allows us to replace; in

. o ) Eqg. (3.13b with pU; to produce the standard mechanical
We are now in a position to write down the full hydrody- equation for a solid with dissipation:

namic equations for nematic elastomers. For simplicity, we
will restrict our attention to isothermal processes so that wepl, = (Cs + 755 daUy,+ (C3 + 73d;) daUii+ 2(Cy + 1740;) JpUap
can ignore temperature diffusion. This leaves us with six

A

hydrodynamical variables, the momentum dengjtx), and * (C? * ’75?‘9‘)‘92”32_ Kg‘azua, (3.159

the displacement;(x). These are independent variables at B

the reference point that satisfy the continuum generaliza- pUz = (Cy+ mdy+ Co+ 720) I\,

tions of the usual relations for the momentum and displace- +(Cy + 700, + Cg + 130,) AU

ment of a particle: dgi(x)/dgj(x")=dx—x"), R R R4

au(x)/ au;(x") = & 8(x—x"), anddg;(x)/au;(x')=0. These re- +(C5 + 750) dpUp, — K1 | Uy (3.15h

lations yield a nonvanishing Poisson bracket betwe€x)  Apart from the appearance 6, which is zero in a soft NE,

andg;(x’): rather thanCs and bending terms with quartic derivatives,
{ui(x),gj(x’)} = 5,6(x—x). (3.12 these equations are identical to those of a uniaxial solid.

Upon switching to frequency space one can see that the
The g-g and u-u Poisson brackets are zero. Using these restatic renormalization of the shear moduldg Eq. (3.113,
sults, we obtain the equations of motion has a dynamical generalization with a frequency-dependent
CR(w)=CR-iw7f, whose real part vanishes whezf=0.
v = = SHiin - 1 . (3.133 This form for C¥(w) is only valid in the hydrodynamic limit
60 p with w7<<1. As we will discuss more fully in the next sec-
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ng

T

FIG. 1. Symmetry directions. Thedirection is perpendicular to
the plane containing the equilibrium directoy and the wave vector

FIG. 2. Schematic polar platrbitrary unit$ of the sound ve-
locities ¢; (solid line), ¢, (short-dashed ling andc, (long-dashed

line).
g of a generic excitation. Th€ direction is perpendicular tq and )
thet direction.
Cy, .
_ - o c(6) =/ —]sin 4| (3.179
tion, there are other terms iB:(w) when this limit is not p

obeyed. ) .
that vanishes whefi=0 and reaches a maximum @t /2.

The sound velocities; () andc,(6) of the other modes are
coupled and satisfy
To assess the mode structure of the equations of motion

C. Sound velocities

(3.195, we begin with an analysis of propagating sound 2, 2_ 1 _

modes in the absence of dissipation. To keep arguments Cl+c2‘pz[(2C4+C3)(C1+2C2+C3) (C,
simple, we will restrict ourselves here to ideally soft NE's 210020 Sir?

with CR=0. When CR+0, the bending terms can be ne- + Cg)Jcos’d sin6 (3.17H

glected, and the dynamical equations and associated modes

are identical to those of uniaxial solids. We will return to 1

case wherCE is nonzero in Sec. IV. ci+cs= —[(2C4+ Cy)sinPd+ (Cy + 2C, + Cz)co ).
The sound modes have frequencigs]) =c(6)qg, whered p

is the angle thatj makes with thez axis. The nondissipative (3.179

bending terms give rise to modes with~ g? along the sym- . ) ] ) o
metry direction. These modes, however, mix with dissipativel Nese equations are identical to the equations satisfied by the
ones and become overdamped diffusive modes with sound velocities in a columnar systgBj. One of the sound
-ig2. Thus, to obtain the true nondissipative sound-modénodes is purely longitudinal in the lim; — «; its velocity
structure, we can ignore the bending terms. Consequentiallj§ nonvanishing for alb. The second mode is like that of a
the nondissipative sound-mode structure is that of a uniaxia}mecticA liquid crystal [5,29 with a sound velocity that
solid with C5=0, which, it turns out, is identical to that of Vvanishes at9=0 and 6=/2. The third mode is a purely
columnar liquid crystals, though the input variables aretransverse sound mode whose velocity vanishes onl§ at
slightly different(there is nou, in a columnar liquid crystal. =0. Figure 2 plots the three sound velocities.

but there is an independent dengitfhe modes break up
into displacementsi=¢,,0.U,/q, perpendicular to botly

‘ i D. Full incompressible mode structure
and thez axis and coupled displacements=q,u,/q, and

U, in the plane that contairg (see Fig. 1. In Fourier space, Having found the general sound-mode structure in the
the hydrodynamic equations are nondissipative limit, we turn to a full analysis of modes in
5 5 the incompressible limit. To discuss this limit, it is useful to
po Uy = Cyqf Uy, (3.16a  decomposei(q) into a longitudinal party alongq and com-
ponentay, perpendicular to both andz, anduy perpendicu-
pwu, =(Cy+C3)q, U, + (C3+2C»% U, lar to g in the plane containing andz as shown in Fig. 1.
(3.16H As was the case in the dissipationless limjtdecouples

from ur andu,. In the incompressible limity, vanishes and
we are left with
pw?li;= (Cy + 2C, + Ca)qu, + (Co + C3)q, G, -
(3.169 pe’l = (Cya + K5 U~ iw(ns07 + 7502y,
Thus, there is a transverse sound mode with velocity (3.183
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verse waves found by TW22] that makes NE’s candidates
for acoustic polarizers. We will return to this issue in Sec.
IV C.

Equations(3.219 and (3.233 show that one misses the
slow diffusive modes if one neglects the Frank energy. It is a
legitimate question, however, under what conditions these
modes can be observed experimentally. Manifestly, they

These equations produce propagating modes with respecti\%‘omd be observable directly in the symmetry directions in

frequencies

Ic 20 P + 7R
thi: + _4|ql|_| 774ql 775qZ, (3193
p 4p
_ Cy+2C4lq,q
O
2(m + 7]4)012ng+ U?(QZL - qg)z
—i > , (3.19b
4pq

as long agy is not along a symmetry direction in which the
sound velocity is zero. Wheq, =0, thet and T modes be-
come diffusive with identical frequencies

1r T RI A ALR
;p[-ln?i V= (757 + 160KE] 2. (3.20

W+ = OT+=

As in conventional nematicsK;~K3;~10° dyn and p
~1 g/cn?. The viscosity should be larger than the&1 P
characteristic of fluids. Thus we can expect thapi$
<(7;§)2. In this limit the above modes become slow and a
fast diffusive mode with frequencies

2KE
W= wrs=—I— R 0, (3.219
s
R
!
o= o =i 0 (3.21h
p

When ¢,=0, thet modes remain propagating soundmodes,
but theT modes become diffusive with frequencies

1p —_——
wre = 4—p[— iR \- (D)7 +160KE]eR,  (3.22
which in the limit 16<%p<(75)? to reduce to

2KY
wT,S: - |—F\§qul, (3233

5

7]R
W= i2—5qﬁ. (3.23h

I

which the respective sound velocities vanish whereas they
should not be seen in directions which differ significantly
from these symmetry directions. Between the two extremes
there will be a crossover from slow diffusive to propagating
behavior at certain crossover angles. These angles can be
estimated by comparing the magnitude of the terms in Egs.
(3.19 and(3.219 or, respectively(3.239. For =0, we get,

for example, from Eqg3.19 and(3.219 that the crossover

is expected at an anglg such that

R

. p K3
|sindy| = \/ ——=0.

C, 775

The wave vectors in light scattering experiments on NE dy-
namics typically have a magnitudg~ 10° cm L. The elastic
moduli C; and C, should be comparable to the shear
modulus of rubberC, ~C,~ 10" dyn/cn?. Hence we es-
timate

(3.29

(3.2

i.e., the range around the nematic direction in which the slow
diffusive behavior is observable is extremely narrow. Apply-
ing the same reasoning to the slow diffusivenode for ¢

~ /2, we obtain a further crossover andglg, with

|cosd, | = 1074,

|singy| = 1074,

(3.26

signaling the same extremely narrow angle range for slow
diffusive behavior as above.

IV. DYNAMICS WITH DISPLACEMENTS AND DIRECTOR

Nematic elastomers, like their conventional nematic-
liquid-crystal counterparts, are characterized by a Frank di-
rectorn that responds dynamically to external forces. In this
section, we will use the Poisson-bracket approach to derive
phenomenological equations for the dynamics of both the
director and displacements in nematic elastomers. Though

our derivation is different from that of TW, our dynamical
equations are in fact identical to theirs if they include con-
tributions from the Frank free energy for the director. Our
equations also reduce to the standard equations of nemato-

hydrodynamicg33,34 when elasticity due to network cross-
linking is turned off. It must be emphasized, however, that

our equations predict nonhydroydynamic modes character-
ized by a decay time that does not approach infinity with

Note that there is one pair of diffusive and one pair ofvanishing wave numbaeg. In any real system, there are many
propagating sound modes in the incompressible limit whemonhydrodynamic modes with characteristic decay timgs

0,=0. The attenuatiolthe imaginary part of]) of the diffu-

For a dynamical theory to provide a correct description of a

sive modes is proportional taw and that of the sound modes system over a frequency range from zero to some maximum
is proportional tow. This is the explanation of the large frequencywy it must include contributions from all modes,
difference in attenuation of the two polarizations of trans-both hydrodynamic and nonhydrodynamic, with characteris-
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tic frequencies up to a few times,,. An isotropic rubber is ) ] SH

characterized by rather long decay timgsof Rouse-like N = Njjk 3jUk—Fg, (4.39
modes of chain segmenfd4]. At frequenciesw such that :

wTr<1, its viscosities become frequency independent and it

is described by the hydrodynamical equations of an isotropic 1

solid. However, whenwry=1, viscosities develop a non- U =—0, (4.3b
trivial frequency dependence and hydrodynamics breaks p

down. In our theory for nematic elastomers, we assume that

there is a single director relaxation timend that it is much SH

larger than7g so that we do not need to worry about the i = Ngji ﬂig Y + Vi 90Uy (4.30
frequency dependence of viscosities arising from Rouse k i

modes. We will, however, point out where these assump-

tions, also made by TW, can be modifiedsk 75, dynamics ~ The first terms on the respective right-hand sides of Egs.
at frequenciesorz=1 will be dominated by Rouse modes, (4.38 and(4.3b) as well as the first and second terms on the
and it may be difficult to distinguish director relaxation rght-hand side of Eqi4.3¢ stem from the Poisson brackets.
modes from Rouse modes in experiments in which displacek? is the full elastic energy of NE's as stated in £8.1). The
ments are probed. The hydrodynamic description of the presecond term on the right- hand side of £4.39 is a dissi-

ceding section, however, remains valid wherny<1. pative term that describes diffusive relaxation. There is no
dissipative contribution to Eq4.3b) because NE's are teth-
A. Equations of motion ered. v is a viscosity tensor that has the same structure as

7ij- It has five independent componentsto vs. We use

When. we keep the director as a dynamlca] variable, OUljitferent symbols here for the viscosities than we used in
formulation is closely related to nematodynamics. The equ Sec. Il so that we can cleanly keep track of differences

tion qf mo_t|pn fpr the director ha§ a reactive coupllng.to thebetween the two theories.
veIocnyv.-u arising from the. Poisson brackgt QK).() with . We have assumed in Eqggt.3) that bothI" and v;,, are
gj(x'). This Poisson bracket is generally derived in EUIerIaI’]Iocal in time or, equivalently, that their temporall Fourier

coordinateg34,49 in which there is a contribution- Vn 10 4nst0rms are independent of frequency as they are at fre-
the equation fogn. This term can be combined Withn 10 ¢, enciesw less than their respective inverse characteristic
yield the Lagrangian time derivative. The remaining part times 72 and 72, At larger frequencies, however, bdthand
of the Poisson bracket is viju do depend on frequency. In polymer gels, storage and
{Mi(x),gj(x")} = = Njedhdx = x'). (4.1 loss moduli are proportional tew at frequenciesvrz>1 .
because of the large number of closely spaced modes which
The properties of the tensar are dictated by three con- iy turn leads to viscosities proportional to \ké at these
straints: FirSt, the magnitude of the director has to be Confrequencies_ Though there are to our know|edge no micro-
served —i.e.n-n=0—implying niA;; =0. Second, the equa- scopic calculations of (), there is no reason why many
tions of motion must be invariant under——n, implying  ¢josely spaced modes should not lead to Rouse-like behavior
\jjx must change sign with. And thigd, under rigid uniform ¢ frequenciesor-> 1. There is also no reason why and
rotations, the director has to obay3(Vxu)Xn. The only 7. should not be equal or nearly so. If the decay timfer
tensors and vectors available to use for the construction ahe nonhydrodynamic director modes predicted by the the
Aijc are &, m, and the Levi-Civita antisymmetric tensef,  theory with the low-frequency approximations Foand vy
and the only tensors that satisfy the first two conditionsis greater than and 7, then this theory provides a correct
above aresin, and &,n; where 5 =&;—nn;. Thus the first description ~ of the dynamics  for  frequencies
two conditions imply that\ has two independent compo- 0< w<min(7g, 7} includingw~ 7. If, on the other hand,
nents, which can be expressed as parts symmetric and anti= min(r, ), the full frequency dependence Bfmust be

symmetric under interchange pfandk: used for frequencies >min(75, 7Y). In all cases, however,
A A, the hydrodynamic theory of the preceding section is regained
Nijk = E(&Enk+ Siny) + E(aﬁnk— SinyY. (4.2 in the limit o<min(7, 75, 7Y). To keep our discussion

simple, we will continue to assume that bdthand v, are

The third condition implies that the coefficient, of the  frequency independent. Our equations can, however, incor-
antisymmetric part must be equal to —1. There are no conporate the frequency dependence of these quantities merely
straints on the value of, which is equal to the ratio of two by replacing them by their frequency-dependent foirte)
dissipative coefficients of the Leslie-Eriksen thedi33]. and vjjq ().
When its absolute magnitude is positive, it determines the At this point, we would like to comment on the precise
equilibrium tilt angle of the director under uniform shear relation of Egs.(4.3) to the equations of nematodynamics.
[27]. One retrieves the latter from the former by setting all the

Using the Poisson brackets for the director and those foelastic constants ifi, except for the Frank constarks, K5,
the momentum density and displacement discussed in thendKj;, equal to zero. Thus we are guaranteed to obtain the
preceding section, we obtain the equations of motion for avell-known modes of nematic liquid crystals in this limit.
nematic elastomer: One can also make the observation that in this limit Egs.
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(4.3) depend just on=u rather than owv andu. If one seeks - pw?U, = [Cy(w) + Cy(®)]dUy,+ [Cow) + Cs(w)]d,u;

modes in terms ol rather thanv, one finds extra zero- R

frequency modes that are spurious. + C5(@) oz, (4.6b
Next, we condense the equations of motion into a reducegith C,(w)=C,~iwwy, Co(w)=Co—iww,, etc., and

set of effective equations. We can simplify the subsequent

analysis at the onset by eliminating eitheeor g with help of

Eq. (4.3b. To facilitate in contact with the work of TW we

% ) D_g(l —iwn)?
choose to keep. For the same reason we opt to work with

CR(w)=Cs—i ( +— -
5(@) = Cs o\ s+ o = o L —iwry)

Q rather tham. This represents no difficulty sind@ andn =CE-iwrf+0(0?), (4.7
are simply related via Eq3.8). Collecting, we obtain after where
some algebra the following effective equations of motion for
Q andu: N2 1 \2
V5—V5+E 1—:2 (4.8

{{d+ T'D1]82p = T'Map(V)}Qp=[Adt ~ TDlugz + TM (V)
(4.439

AN+1
Pé'tzua == ?éwz[Qa — NUgg| +[Cy + v20;]daUy,

+[Cg+ v30]daUii + 2[Cy + 149 ] dpUap

2

1
IQa;

(4.4b

D,
+| Cs+ w50 — ? Ilaz +

A1
pdtu, = - ?(?t‘?b[Qb = NUp |+ [Cy + 110, + Cy + 1200,

D
+[Cy+ vpd; + C3 + v3d;]d U5+ {Cs + vy + 72} JpUpz

D,+D,
2

+

Qp- (4.40

To make contact with uniaxial solids we now take a briefbo
detour and consider the simplified ca¥k,(V)=0. In this

Note that Egs(4.6) are identical in form to Eq(3.15 for
uniaxial solids withk}=K5=0. Note also that we can iden-
tify »,=v4 and so on. Indicating the consistency of our two
approaches, we can identify the renormalized viscosb@s
and v?. As pointed out earlier, Rouse modes will be impor-
tant for o7z=1 andw7m> 1, leading to a frequency depen-
dence of the viscosities. In this regime we have to et
—1j(w) andl'—T'(w). For wz>1 andw7-> 1, in particu-
lar, the viscosities are proportional to s [44].

Before we move on we point out that Eq4.4) become
identical to the equations of motion by TW if we take the
incompressible limit and if we neglect the Frank energy, pro-
vided, of course, that we take into account that somewhat
different conventions are used and provided that correspond-
ing quantities are identified properly. A detailed comparison
to TW at the level of final results for the modes will be given
in Sec. IV C.

B. Mode structure
1. t direction

By applying e,,0, (including the summation ovea) to
th sides of the Fourier-transformed version of E49
we obtain a diagonalized equation of motion fQy that is

case Eq.(4.49 is diagonal in frequency space and readily readily solved with the result

solved, with the result

D,1-iwr
Qa= _2—2uaz- (4.5

o Dll_inl

In writing Eqg. (4.5 we have used the relaxation times
=1/(I'D,) and 7,=-\/(I'D,). Here 7;,~1072s[1,41,47 is
essentially the relaxation time of the director. Pure hydro
dynamic behavior is obtained when batir; and wr, are
much less than 1 as our calculations will verify. In terms

of the relaxation times)\ is given by N=-7,D,/(7D,).

Note that\ is usually negative, but if it is positive, there

no inconsistencies arising from a negatiwe

Inserting expression(4.5) into the timewise Fourier-

transformed equations of motion fag andu,, we obtain

- szua = CZ(w)&auzz'}' C3(w)07auii + 204(w)(9buab

(4.63

+ C?( w) IMaz,

_Dpl-iwn+ KD, 1.

= 1q,U;, 4.9
@ Dy 1-iwr, +PK/D, 2 4.9

where we have used the abbreviated notation
oK, = K02 + Kg02. (4.10

Application of the same procedure to Hg.4b yields

2 A+l : A 2
- pU = ?'sz Q¢+ quut = Cylw)q7 u
D,-D;. 1 D
+ > l'Qth - 5[05(60) - ?z}qfut.

(4.11

U, is a purely transverse displacement that does not couple to
any displacement in the plane containigpgAs a result, the
elastic constant€, and C;, which couple toy;, do not ap-
pear in this equation of motion.
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Next, we insert Eq(4.9) into (4.11), which gives an ef- 2. T direction
fective equation of motion fou; alone. This equation of
motion has solutions withy, # 0 for frequencies satisfying

the secular equation

Except for thet direction, an analysis of the modes is
prohibitively complicated unless one resorts to the incom-
pressible limit. In this limitC;=< andu;=0, and as a result,
C,, Cs, v, and vy do not appear in the equations of motion
for u.

A\ + Diw— A7t - 2I'Cy(w)
w’p - Cylw)q® + 2 > e

z
ar We need the equations of motion for the direction as
. ) N+1- 711 - )\Tgl intermediate results for studying tAedirection. Applyingqg,
XDy[1 -iwm +q°K/D]+ —a (including the summation ove) to the Fourier-transformed
counterparts of Eqg4.49 and(4.4b), we obtain
XZDy[1 —iwT, + GPK{/D,] = 0. (4.12
H 2
Evidently, this secular equation is too complicated to find Q, =- Dp1-iw7,+qK, /Dy 1,

useful closed solutions fab. However, since we are inter-
ested in the long-wavelength behavior, we can perturbatively

. Iq,u
D;1-iwr+q?K, /D2 q.b
_Dpl-iwn,—q°K,/Dp1.

: ; . e —ig,u 4.16
Sgg;;rrmne solutions in the form of a power series in the wave D, 1—-iwr K, /D2 qu., 3
Let us first consider the simplified case of vanishitg
andD’s. In this case we obtain as expected the well-known N+ 1 N
slow and fast direction modes of nematic liquid crystals: - w’pu, = ?iqu[iQL + E(QLUZ+ qzul)}
. (L+N)°q; -
= —i[Kof + KaP{ T+ — 55— 2 D, - Dy
wys =~ i[Ko0 3%]{ 2@+ 20,) | - 2C/(w)qiu, + > i9,Q
- 5|:C5(w) - ?2:|qz(chuz+ qzul)v
2v,07 + vs0s
o= (4.13b (4.160

2p ’

as well as the previously announced spurious zero-frequendyhere we have used the shorthand
mode. In writing Eqs(4.13) we have considered as usual the
limit KplI'/v<1, whereK stands symbolically for all the

Frank constants andstands ambiguously for all the viscosi-

ties. In comparing Eqg4.13 and(4.19 to the original re- | addition to Egs.(4.16 we also need the Fourier-

sults on nematic liquid crystals as given in RE33] oné  yansformed version of Eq4.49 in the incompressible limit:
should be aware of slight differences in the notations. If we

wish to use the notation of Reff33], we have to replace, in

%K, =Ky +Kao?. (4.17

- A-1 A
Egs.(4.13, '—y 1 v — 2V, V4— Vp, V5— 213, , —(y, _ wZPUZ: —iwqi[iQi +-(qu,+ QZUL):|
andd,— Ja. 2r 2
Now to the full secular equatiof@.12). Solving this equa- D.+D
tion perturbatively leads also to three modes—namely, one - Cy(w)qPu, + 12 %iq,Q,

massive mode and two propagating modes. The massive

mode has the frequency 1 D,
= 5| Csl@) + =7 |au(a,u, + qu,). (418

R
-1 2 2 . Vs = V5 5
oym =17 ~ITKa0 + Ko ]+ 2p G- (4.19 Next, we set up an equation of motion fiof that depends

onu,, u, andQ,. Then we eliminate) , with help of Eq.

Note that Eq(4.14) does not depend cﬁ?. Hence this mode (4.169. Finally, we exploit thatu, =-qu:/q and u,
is shared by soft and semisoft NE's. As long as the soune:q, u;/q in the incompressible limit. These steps provide us
velocities of the soft modes are finite, their frequencies arewith an effective equation of motion fax; alone. In order to
allow for solutionsur# 0 the frequencies have to satisfy a
. [2C,qf +Che? . 2v,0, + V5L (4.15 condition analogous to E@4.12. We opt not to write down
= = 2p : 4p ’ ) this secular equation here because it is rather lengthy and
because it can be obtained in a straightforward manner from
in full agreement with Eq(3.193 whenC5R:0 and the iden- the ingredients given above.
tifications v,=17, and »5=7F are made. For soft NE’s the We proceed as above and first consider the simplified case
soft t modes become diffusive if, =0. The frequencies of of vanishingC's andD’s. As anticipated, we obtain a spuri-
these diffusive modes are easily identified with those giverous zero-frequency mode as well as the slow and Tast
in Egs.(3.20 and(3.2)). direction modes of nematodynamics:

051801-9



O. STENULL AND T. C. LUBENSKY PHYSICAL REVIEW EG69, 051801(2004)

Wrs=— i[Kqul + K3q2] TABLE |. Correspondence between quantities used by TW and
' ‘ 5 s oo quantities used in our work.
Are [9° -] - )]
2V5(q2l _ qg)z +A(vy + 2V4)q2lq§ ’ T™W This paper TW This paper
(4.1939 2C, C, 2A, vy
202 C2 4A5 V5+ )\2/(2F)

- 2(vy + 2v,)q 0 + vs(d — qp)° (4.19b 2C5 Cs " r

wT’f - 2pq2 y . 204 C4 Y2 -\/T

4Cs Cy ) -w

whereK I'/v<1 is implied. 2A " 0, Q,

By perturbatively solving the full secular equation we ex-  ,, » P -Q
tract the thred direction modes for NE's. We find one mas- 2 2 RZ R !
sive mode s vs Cs() Cs(w)
R 2 2\2
-1 . 2 2 .V5_V5(ql_qz)
orm=—1 —il[Kq] +K3lgs +i—=——————
T.m 1 ML 31Mz 2[) q2 D )\()\_}_1)
2
(4.20) 0a7= | Cs+ v50; — ? + o ¢ |Uaz
and two soft modes. For nonvanishing sound velocities the 1 L A+l
soft modes have frequencies ¥ Z[DZ D1~ 74| Qa (4.239
_ \/ 2(Cy +2C,)q7 o + CE(q? — 63)°
wT,i = * 2 2
pq - C + (9 + % + M
—j 2(vy + 20 Gz + vE(a] - 09 (4.21) TzaT | T or T
4pg? ' ' 1[ A-1 }
+=|Dy+D;——4;|Q,, (4.230
WhenCE=0 this result reduces, provided that the viscosities 7] R U B

are properly identified, to Eq(3.19h. In the case of ideal

soft elasticity the sound velocities vanishqf =0 or g,=0.

For g, =0 the frequencies of the then diffusifemodes are where we have taken the incompressible limit. Equations
identical to those for the diffusive modes; see Eq$3.20 (4.23 show clearly thatr is not symmetric and that its an-
and(3.21). For gq,=0 we retrieve Egs(3.22 and (3.23. tisymmetric part is

C. Comparison to TW

Now we compare our findings to those by TW. First, we  o,,— 0,5= 1{[7-11+ 30Qa— N 75" + d]uag = Moy(V)Qy,
will demonstrate that our equations of moti@h4) are iden- I
tical to the equations of motion by TW if we restrict our- (4.29
selves to the incompressible limit and if we neglect the Frank
energy. Second, we will compare our final results for the
modes to those found by TW. Of course, we must take intavhere we have used E.48 to obtain the last equality.
account differences in conventions and notations in thesgquation(4.24 reveals that the stress tensay defined in
comparisons. For guidance in identifying the correspondingegs.(4.23 is symmetric only when the Frank energy can be
quantities, see Table I. ignored. Of course, when the Frank energy is included, it is
In order to compare our equations of motigh4) to the  always possible, following the procedures in R¢83] and
equations of motion by TW we rewrite Eqg.4b) and(4.49  [34], to define a symmetric stress tensej yielding the
as same equations of motion ag.
If we neglect the Frank energy, our stress tensor becomes
- P3t2 U = d;0jj, (4.22 identical to the symmetric stress tensor used by TW provided
that we take into account Table I. Moreover, as can easily be
checked, Eq.(4.49 becomes identical to the balance of
torques equation under these circumstances. Therefore, our
equations of motiori4.49, (4.4b), and(4.4¢) are equivalent
to the equations of motion by TW provided that we take the

where theo;; are the components of the stress tensofrhe
specifics of theo;; are easily gathered from Eqgl.4b and
(4.40:

Tab= 2 Ca* v4dh]Uap, (4.239 incompressible limit and neglect the Frank energy.
At this point it is interesting to compare the stability con-
07,=[Cq + 116 ]Uyy (4.23p  ditions which are implicit in the dissipation function. Our
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equations imply in the incompressible limit that=0, v, , 1 2q2 R (qL )2

=0, andvs=0. While the first two conditions can be readily ~ "= [Ci(w) + 204(60)] +Colw)———>%—

identified with the condition#;=0 andA,=0 in the work P

of TW, the situation is less obvious for the last condition. (4.30

Note, however, that we can reexprags=0 in terms of the

quantities used by TW as Note that Eq(4.30 is essentially identical to th€ direction

secular equation for conventional uniaxial solids. TW con-
)2 sidered theT modes only forq,=0. For q,=0, Eq. (4.30
v = 4As— == =0, (4.25  reduces to

2y

which has an identical counterpart in the work of TW. Stated w’= 2—1PC§(w)q2L(1 -iwmR). (4.30)

in terms of the relaxation times, this condition requires that

Using Table |, we find that Eq4.31) is in full agreement
with the result of TW for the qSV waves.

Before summarizing our findings, we now briefly return
for ideally soft NE's. to the property NE's that makes them, as pointed out by TW,

Next, we come to the comparison of the results for thecandidates for acoustic polarizers—viz., the large difference
modes. Our first observation is here that the massive modés attenuation between theand T modes in the symmetry
wym and o, are unaccounted for by TW. Note that the soft direction whereq,=0. For thet direction it follows immedi-
modes in the and T directions are referred to in TW as qSH ately from Eq.(4.28) that the attenuation is proportional é&o

TR Th (4.26)

waves and qSV waves, respectively. i C5 =0 andq,=0. Equation(4.31) has two solutions for
Let us first compare the findings regarding thdrection. Cs O—namely, =0 and, with the proper identifi-
To foster this comparison we recast our re¢dllL5) as cation, v8= 78, the fast diffusive mode in Eq3.23D. If the

Frank energy is taken into account, the0 mode becomes
1 the slow diffusive mode of Eq3.239. Due to their diffu-
w?= 2—[2C4(w)cﬁ + C(w)qZ]. (4.27  siveness, the attenuation of thékenodes is proportional to
P Vw and hence much larger for low frequencies than the at-
) ) ) tenuation of the propagatirtgnode. This large difference in
To the order we are working—i.e., to ord®tg*)—solutions  attenuation can be used, in principle, to split fhenodes
to Eq. (4.27) and ourw,, coincide. Note that Eq4.27) is  from thet modes.
essentially identical to thé direction secular equation for
uniaxial solids. This can easily be checked by starting with
Eg. (4.6a and by then switching to thedirection. V. SUMMARY

To make further contact with TW we eliminate the vis- ) o
cosities in Eq.(4.27) in favor of the relaxation timers Nematic elastomers exhibit the remarkable phenomenon

~1,/Cy~ - =~ s/ Cs~[vg+\2/(2T')]/Cs. The subscripR of soft or F;semisoft eIa;ticity in which _the effectivg shear
modulusCg for shears in planes containing the anisotropy
axis, respectively, vanishes or is very small. In this paper, we
have explored the dynamical consequences of this elasticity.
We derived dynamical equations, involving only the dis-
L placement, valid in the hydrodynamic limit in which fre-
2_ — 2 _ guencies and wave numbers are, respectively, small com-
- [2C4qL+C (w)q 12 ~om), (4.28 pared to all characteristic microscopic inverse times and
lengths in the system, and we determined that their mode
structure is identical to that of columnar liquid crystals in the
soft limit whenCE=0. We also used the Poisson-bracket ap-
) ) 5 proach to derive dynamical equations, which contain nonhy-
é?(w) - (w) - Dy (1-iwn) _ drodynamic modes, for both director and displacement and
1—Ia)7'R 2D, (1 -iwm)(1 -iwTR) verified that they reduced to those derived by Terentjev,
(4.29 Warner, and co—workefd,22] when contributions from the
Frank free energy can be ignored. We analyzed the mode
. structure of these equations assuming a single relaxation
Taking into account Table I, we see that &@ff(w) is iden-  time for the director, which we took to be longer than any
tical with the renormalized form dfs found by TW and that  other characteristic decay time such as the Rouse tigne
Eqg. (4.29 is in full agreement with the dispersion relation of Our equations, however, permit the introduction of

indicates thatrg~107°-10"°s is of the order of the Rouse
time of the polymers constituting the rubbery matrix. We
obtain

where

TW for the qSH waves. frequency-dependent dissipative coefficients valid at fre-
Now to theT direction. To ordeO(q®) our results forwr,.  quencies higher than these inverse decay times.
coincide with the solutions of Rheological experiments at zero wave number have
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reported frequency-dependent storage and loss moduli thabuld mask the signals of the characteristic modes of a ho-
are in agreement with the predictions of the semisoft theorynogeneous system.

that includes the directdd.8]. It would be interesting to map
out the modes of nematic elastomers directly using light scat-

tering. It may, however, be difficult to access the true hydro- e gratefully acknowledge support by the Emmy
dynamic limit because it applies in current NE's only for Noether-Programm of the Deutsche Forschungsgemeinschaft
frequencies of order 100 Hz or less and because inhereqD.S) and the National Science Foundation under Grant No.
sample inhomogeneities may lead to extra scattering thadMR 00-95631(T.C.L.).
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